scholarly journals On the Impact of Unmanned Aerial System Observations on Numerical Weather Prediction in the Coastal Zone

2018 ◽  
Vol 146 (2) ◽  
pp. 599-622 ◽  
Author(s):  
David D. Flagg ◽  
James D. Doyle ◽  
Teddy R. Holt ◽  
Daniel P. Tyndall ◽  
Clark M. Amerault ◽  
...  

Abstract The Trident Warrior observational field campaign conducted off the U.S. mid-Atlantic coast in July 2013 included the deployment of an unmanned aerial system (UAS) with several payloads on board for atmospheric and oceanic observation. These UAS observations, spanning seven flights over 5 days in the lowest 1550 m above mean sea level, were assimilated into a three-dimensional variational data assimilation (DA) system [the Naval Research Laboratory Atmospheric Variational Data Assimilation System (NAVDAS)] used to generate analyses for a numerical weather prediction model [the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS)] with a coupled ocean model [the Naval Research Laboratory Navy Coastal Ocean Model (NCOM)]. The impact of the assimilated UAS observations on short-term atmospheric prediction performance is evaluated and quantified. Observations collected from 50 radiosonde launches during the campaign adjacent to the UAS flight paths serve as model forecast verification. Experiments reveal a substantial reduction of model bias in forecast temperature and moisture profiles consistently throughout the campaign period due to the assimilation of UAS observations. The model error reduction is most substantial in the vicinity of the inversion at the top of the model-estimated boundary layer. Investigations reveal a consistent improvement to prediction of the vertical position, strength, and depth of the boundary layer inversion. The relative impact of UAS observations is explored further with experiments of systematic denial of data streams from the NAVDAS DA system and removal of individual measurement sources on the UAS platform.

2017 ◽  
Vol 17 (22) ◽  
pp. 13983-13998 ◽  
Author(s):  
Magnus Lindskog ◽  
Martin Ridal ◽  
Sigurdur Thorsteinsson ◽  
Tong Ning

Abstract. Atmospheric moisture-related information estimated from Global Navigation Satellite System (GNSS) ground-based receiver stations by the Nordic GNSS Analysis Centre (NGAA) have been used within a state-of-the-art kilometre-scale numerical weather prediction system. Different processing techniques have been implemented to derive the moisture-related GNSS information in the form of zenith total delays (ZTDs) and these are described and compared. In addition full-scale data assimilation and modelling experiments have been carried out to investigate the impact of utilizing moisture-related GNSS data from the NGAA processing centre on a numerical weather prediction (NWP) model initial state and on the ensuing forecast quality. The sensitivity of results to aspects of the data processing, station density, bias-correction and data assimilation have been investigated. Results show benefits to forecast quality when using GNSS ZTD as an additional observation type. The results also show a sensitivity to thinning distance applied for GNSS ZTD observations but not to modifications to the number of predictors used in the variational bias correction applied. In addition, it is demonstrated that the assimilation of GNSS ZTD can benefit from more general data assimilation enhancements and that there is an interaction of GNSS ZTD with other types of observations used in the data assimilation. Future plans include further investigation of optimal thinning distances and application of more advanced data assimilation techniques.


2017 ◽  
Author(s):  
Magnus Lindskog ◽  
Martin Ridal ◽  
Sigurdur Thorsteinsson ◽  
Tong Ning

Abstract. Atmospheric moisture-related information obtained from Global Navigation Satellite System (GNSS) observations from ground-based receiver stations of the Nordic GNSS Analysis Centre (NGAA) have been used within a state-of-the-art km-scale numerical weather prediction system. Different processing techniques have been implemented to derive the the moisture-related GNSS information in the form of Zenith Total Delays (ZTD) and these are described and compared. In addition full scale data assimilation and modelling experiments have been carried out to investigate the impact of utilizing moisture related GNSS data from the NGAA processing centre on a numerical weather prediction (NWP) model initial state and on the following forecast quality. The sensitivity of results to aspects of the data processing, observation density, bias-correction and data assimilation have been investigated. Results show a benefit on forecast quality of using GNSS ZTD as an additional observation type. The results also show a sensitivity to thinning distance applied for GNSS ZTD observations but not to modifications to the number of predictors used in the variational bias correction applied. In addition it is demonstrated that the assimilation of GNSS ZTD can benefit from more general data assimilation enhancements and that there is an interaction of GNSS ZTD with other types of observations used in the data assimilation. Future plans include further investigation of optimal thinning distances and application of more advanced data assimilation techniques.


2013 ◽  
Vol 28 (3) ◽  
pp. 772-782 ◽  
Author(s):  
Stéphane Laroche ◽  
Réal Sarrazin

Abstract Radiosonde observations employed in real-time numerical weather prediction (NWP) applications are disseminated through the Global Telecommunication System (GTS) using alphanumeric codes. These codes do not include information about the position and elapsed ascent time of the balloon. Consequently, the horizontal balloon drift has generally been either ignored or estimated in data assimilation systems for NWP. With the increasing resolution of atmospheric models, it is now important to consider the positions and times of radiosonde data in both data assimilation and forecast verification systems. This information is now available in the Binary Universal Form for the Representation of Meteorological Data (BUFR) code for radiosonde data. This latter code will progressively replace the alphanumeric codes for all radiosonde data transmitted on the GTS. As a result, a strategy should be adopted by NWP centers to deal with the various codes for radiosonde data during this transition. In this work, a method for estimating the balloon drift position from reported horizontal wind components and a representative elapsed ascent time profile are developed and tested. This allows for estimating the missing positions and times information of radiosonde data in alphanumeric reports, and then for processing them like those available in BUFR code. The impact of neglecting the balloon position in data assimilation and verification systems is shown to be significant in short-range forecasts in the upper troposphere and stratosphere, especially for the zonal wind field in the Northern Hemisphere winter season. Medium-range forecasts are also improved overall when the horizontal position of radiosonde data is retrieved.


2020 ◽  
Vol 35 (2) ◽  
pp. 309-324
Author(s):  
Susan Rennie ◽  
Lawrence Rikus ◽  
Nathan Eizenberg ◽  
Peter Steinle ◽  
Monika Krysta

Abstract The impact of Doppler radar wind observations on forecasts from a developmental, high-resolution numerical weather prediction (NWP) system is assessed. The new 1.5-km limited-area model will be Australia’s first such operational NWP system to include data assimilation. During development, the assimilation of radar wind observations was trialed over a 2-month period to approve the initial inclusion of these observations. Three trials were run: the first with no radar data, the second with radial wind observations from precipitation echoes, and the third with radial winds from both precipitation and insect echoes. The forecasts were verified against surface observations from automatic weather stations, against rainfall accumulations using fractions skill scores, and against satellite cloud observations. These methods encompassed verification across a range of vertical levels. Additionally, a case study was examined more closely. Overall results showed little statistical difference in skill between the trials, and the net impact was neutral. While the new observations clearly affected the forecast, the objective and subjective analyses showed a neutral impact on the forecast overall. As a first step, this result is satisfactory for the operational implementation. In future, upgrades to the radar network will start to reduce the observation error, and further improvements to the data assimilation are planned, which may be expected to improve the impact.


2019 ◽  
Vol 12 (3) ◽  
pp. 1569-1579 ◽  
Author(s):  
Máté Mile ◽  
Patrik Benáček ◽  
Szabolcs Rózsa

Abstract. The delay of satellite signals broadcasted by Global Navigation Satellite System (GNSS) provides unique atmospheric observations which endorse numerical weather prediction from global to limited-area models. Due to the possibility of its frequent and near-real-time estimation, the zenith total delays (ZTDs) are valuable information for any state-of-the-art data assimilation system. This article introduces the data assimilation of ZTDs in a Hungarian numerical weather prediction system, which was carried out by taking into account observations from central European GNSS analysis and processing centres. The importance of ZTD observations is described and shown by a diagnostic tool in the 3-hourly updated 3D-Var assimilation scheme. Furthermore, observing system experiments are done to evaluate the impact of GNSS ZTDs on mesoscale limited-area forecasts. The results of the use of GNSS ZTDs showed a clear added value to improve screen-level temperature and humidity forecasts when the bias is accurately estimated and corrected in the data assimilation scheme. The importance of variational, i.e. adaptive bias correction, is highlighted by verification scores compared to static bias correction. Moreover, this paper reviews the quality control of GNSS ground-based stations inside the central European domain, the calculation of optimal thinning distance and the preparation of the two above-mentioned bias correction methods. Finally, conclusions are drawn on different settings of the forecast and analysis experiments with a brief future outlook.


2021 ◽  
Vol 14 (9) ◽  
pp. 5925-5938
Author(s):  
Susanna Hagelin ◽  
Roohollah Azad ◽  
Magnus Lindskog ◽  
Harald Schyberg ◽  
Heiner Körnich

Abstract. The impact of using wind observations from the Aeolus satellite in a limited-area numerical weather prediction (NWP) system is being investigated using the limited-area NWP model Harmonie–Arome over the Nordic region. We assimilate the horizontal line-of-sight (HLOS) winds observed by Aeolus using 3D-Var data assimilation for two different periods, one in September–October 2018 when the satellite was recently launched and a later period in April–May 2020 to investigate the updated data processing of the HLOS winds. We find that the quality of the Aeolus observations has degraded between the first and second experiment period over our domain. However, observations from Aeolus, in particular the Mie winds, have a clear impact on the analysis of the NWP model for both periods, whereas the forecast impact is neutral when compared against radiosondes. Results from evaluation of observation minus background and observation minus analysis departures based on Desroziers diagnostics show that the observation error should be increased for Aeolus data in our experiments, but the impact of doing so is small. We also see that there is potential improvement in using 4D-Var data assimilation, which generates flow-dependent analysis increments, with the Aeolus data.


2018 ◽  
Author(s):  
Witold Rohm ◽  
Jakub Guzikowski ◽  
Karina Wilgan ◽  
Maciej Kryza

Abstract. The GNSS data assimilation is currently widely discussed in the literature with respect to the various applications in meteorology and numerical weather models. Data assimilation combines atmospheric measurements with knowledge of atmospheric behavior as codified in computer models. With this approach, the best estimate of current conditions consistent with both information sources is produced. Some approaches allow assimilating also the non-prognostic variables, including remote sensing data from radar or GNSS (Global Navigation Satellite System). These techniques are named variational data assimilation schemes and are based on a minimization of the cost function, which contains the differences between the model state (background) and the observations. This paper shows the results of assimilation of GNSS data into numerical weather prediction (NWP) model WRF (Weather Research and Forecasting). The WRF model offers two different variational approaches: 3DVAR and 4DVAR, both available through WRF Data Assimilation (WRFDA) package. The WRFDA assimilation procedure was modified to correct for bias and observation errors. We assimilated the Zenith Troposphere Delay (ZTD), Precipitable Water (PW), radiosonde (RS) and surface synoptic observations (SYNOP) using 4DVAR assimilation scheme. Three experiments have been performed: (1) assimilation of PW and ZTD for May and June of 2013, (2) assimilation of: PW alone; PW, with RS and SYNOP; ZTD alone; and finally ZTD, with RS and SYNOP for 5–23 May 2013, and (3) assimilation of PW or ZTD during severe weather events in June 2013. Once the initial conditions were established, the forecast was run for 48 hours. The obtained WRF predictions are validated against surface meteorological measurements, including air temperature, humidity, wind speed, and rainfall rate. Results from the first experiment (May and June 2013) show that the assimilation of GNSS data (both ZTD and PW) have positive impact on the rain and humidity forecast. However, the assimilation of ZTD is more successful, and brings substantial reduction of errors in rain forecast by 8 %, and a 20 % improvement in bias of humidity forecast, but it has a slight negative impact on temperature bias and wind speed. Second experiment (5–23 May 2013) reveals that the PW or ZTD assimilation leads to a similar reduction of errors as in the first experiment, moreover, adding SYNOP and RS observations to the assimilation does not improve the humidity or rain forecasts (in the 48 h forecast) but reduces errors in the wind speed and temperature. Furthermore, short term predictions (up to 24 h) of rain and humidity are better when SYNOP and RS observations are assimilated. The impact of assimilation of ZTD and PW in severe weather cases is mixed, one out of three investigated cases shows positive impact of GNSS data, whereas other two neutral or negative.


2019 ◽  
Vol 11 (8) ◽  
pp. 981 ◽  
Author(s):  
Roger Randriamampianina ◽  
Harald Schyberg ◽  
Máté Mile

In the Arctic, weather forecasting is one element of risk mitigation, helping operators to have knowledge on weather-related risk in advance through forecasting capabilities at time ranges from a few hours to days ahead. The operational numerical weather prediction is an initial value problem where the forecast quality depends both on the quality of the forecast model itself and on the quality of the specified initial state. The initial states are regularly updated using environmental observations through data assimilation. This paper assesses the impact of observations, which are accessible through the global telecommunication and the EUMETCast dissemination systems on analyses and forecasts of an Arctic limited area AROME (Application of Research to Operations at Mesoscale) model (AROME-Arctic). An assessment through the computation of degrees of freedom for signals on the analysis, the utilization of an energy norm-based approach applied to the forecasts, verifications against observations, and a case study showed similar impacts of the studied observations on the AROME-Arctic analysis and forecast systems. The AROME-Arctic assimilation system showed a relatively high sensitivity to the humidity or humidity-sensitive observations. The more radiance data were assimilated, the lower was the estimated relative sensitivity of the assimilation system to different conventional observations. Data assimilation, at least for surface parameters, is needed to produce accurate forecasts from a few hours up to days ahead over the studied Arctic region. Upper-air conventional observations are not enough to improve the forecasting capability over the AROME-Arctic domain compared to those already produced by the ECMWF (European Centre for Medium-range Weather Forecast). Each added radiance data showed a relatively positive impact on the analyses and forecasts of the AROME-Arctic. The humidity-sensitive microwave (AMSU-B/MHS) radiances, assimilated together with the conventional observations and the Infrared Atmospheric Sounding Interferometer (IASI)-assimilated on top of conventional and microwave radiances produced enough accurate one-day-ahead forecasts of polar low.


Sign in / Sign up

Export Citation Format

Share Document