scholarly journals Representing global soil erosion and sediment flux in Earth System Models

Author(s):  
Zeli Tan ◽  
L. Ruby Leung ◽  
Hong‐Yi Li ◽  
Sagy Cohen
SOIL ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 137-158 ◽  
Author(s):  
Yongjiu Dai ◽  
Wei Shangguan ◽  
Nan Wei ◽  
Qinchuan Xin ◽  
Hua Yuan ◽  
...  

Abstract. Soil is an important regulator of Earth system processes, but remains one of the least well-described data layers in Earth system models (ESMs). We reviewed global soil property maps from the perspective of ESMs, including soil physical and chemical and biological properties, which can also offer insights to soil data developers and users. These soil datasets provide model inputs, initial variables, and benchmark datasets. For modelling use, the dataset should be geographically continuous and scalable and have uncertainty estimates. The popular soil datasets used in ESMs are often based on limited soil profiles and coarse-resolution soil-type maps with various uncertainty sources. Updated and comprehensive soil information needs to be incorporated into ESMs. New generation soil datasets derived through digital soil mapping with abundant, harmonized, and quality-controlled soil observations and environmental covariates are preferred to those derived through the linkage method (i.e. taxotransfer rule-based method) for ESMs. SoilGrids has the highest accuracy and resolution among the global soil datasets, while other recently developed datasets offer useful compensation. Because there is no universal pedotransfer function, an ensemble of them may be more suitable for providing derived soil properties to ESMs. Aggregation and upscaling of soil data are needed for model use, but can be avoided by using a subgrid method in ESMs at the expense of increases in model complexity. Producing soil property maps in a time series still remains challenging. The uncertainties in soil data need to be estimated and incorporated into ESMs.


2012 ◽  
Vol 9 (10) ◽  
pp. 14437-14473 ◽  
Author(s):  
K. E. O. Todd-Brown ◽  
J. T. Randerson ◽  
W. M. Post ◽  
F. M. Hoffman ◽  
C. Tarnocai ◽  
...  

Abstract. Stocks of soil organic carbon represent a large component of the carbon cycle that may participate in climate change feedbacks, particularly on decadal and century scales. For Earth system models (ESMs), the ability to accurately represent the global distribution of existing soil carbon stocks is a prerequisite for predicting future carbon-climate feedbacks. We compared soil carbon predictions from 16 ESMs to empirical data from the Harmonized World Soil Database (HWSD) and Northern Circumpolar Soil Carbon Database (NCSCD). Model estimates of global soil carbon stocks ranged from 510 to 3050 Pg C, compared to an estimate of 890–1660 Pg C from the HWSD. Model predictions for the high latitudes fell between 60 and 800 Pg C, compared to 380–620 Pg C from the NCSCD and 290 Pg C from the HWSD. This 5.3-fold variation in global soil carbon across models compared to a 3.4-fold variation in net primary productivity (NPP) and a 3.8-fold variation in global soil carbon turnover times. The spatial distribution of soil carbon predicted by the ESMs was not well correlated with the HWSD (Pearson's correlations < 0.4, RMSE 9.4 to 22.8 kg C m−2), although model-data agreement generally improved at the biome scale. There was poor agreement between the HWSD and NCSCD datasets in northern latitudes (Pearson's correlation = 0.33), indicating uncertainty in empirical estimates of soil carbon. We found that a reduced complexity model dependent on NPP and soil temperature explained most of the spatial variation in soil carbon predicted by most ESMs (R2 values between 0.73 and 0.93). This result suggests that differences in soil carbon predictions between ESMs are driven primarily by differences in predicted NPP and the parameterization of soil carbon responses to NPP and temperature not by structural differences between the models. Future work should focus on accurately representing these driving variables and modifying model structure to include additional processes.


2011 ◽  
Vol 6 ◽  
pp. 216-221
Author(s):  
Sönke Zaehle ◽  
Colin Prentice ◽  
Sarah Cornell

2015 ◽  
Vol 8 (4) ◽  
pp. 3235-3292 ◽  
Author(s):  
A. L. Atchley ◽  
S. L. Painter ◽  
D. R. Harp ◽  
E. T. Coon ◽  
C. J. Wilson ◽  
...  

Abstract. Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.


Climate ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 72
Author(s):  
Xing Yi ◽  
Birgit Hünicke ◽  
Eduardo Zorita

Arabian Sea upwelling in the past has been generally studied based on the sediment records. We apply two earth system models and analyze the simulated water vertical velocity to investigate coastal upwelling in the western Arabian Sea over the last millennium. In addition, two models with slightly different configurations are also employed to study the upwelling in the 21st century under the strongest and the weakest greenhouse gas emission scenarios. With a negative long-term trend caused by the orbital forcing of the models, the upwelling over the last millennium is found to be closely correlated with the sea surface temperature, the Indian summer Monsoon and the sediment records. The future upwelling under the Representative Concentration Pathway (RCP) 8.5 scenario reveals a negative trend, in contrast with the positive trend displayed by the upwelling favorable along-shore winds. Therefore, it is likely that other factors, like water stratification in the upper ocean layers caused by the stronger surface warming, overrides the effect from the upwelling favorable wind. No significant trend is found for the upwelling under the RCP2.6 scenario, which is likely due to a compensation between the opposing effects of the increase in upwelling favorable winds and the water stratification.


2012 ◽  
Vol 25 (19) ◽  
pp. 6646-6665 ◽  
Author(s):  
John P. Dunne ◽  
Jasmin G. John ◽  
Alistair J. Adcroft ◽  
Stephen M. Griffies ◽  
Robert W. Hallberg ◽  
...  

Abstract The physical climate formulation and simulation characteristics of two new global coupled carbon–climate Earth System Models, ESM2M and ESM2G, are described. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory’s previous Climate Model version 2.1 (CM2.1) while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4p1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in El Niño–Southern Oscillation being overly strong in ESM2M and overly weak in ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to total heat content variability given its lack of long-term drift, gyre circulation, and ventilation in the North Pacific, tropical Atlantic, and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to surface circulation given its superior surface temperature, salinity, and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. The overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon–climate models.


2021 ◽  
Author(s):  
Carolina Gallo Granizo ◽  
Jonathan Eden ◽  
Bastien Dieppois ◽  
Matthew Blackett

&lt;p&gt;Weather and climate play an important role in shaping global fire regimes and geographical distributions of burnable areas. At the global scale, fire danger is likely to increase in the near future due to warmer temperatures and changes in precipitation patterns, as projected by the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). There is a need to develop the most reliable projections of future climate-driven fire danger to enable decision makers and forest managers to take both targeted proactive actions and to respond to future fire events.&lt;/p&gt;&lt;p&gt;Climate change projections generated by Earth System Models (ESMs) provide the most important basis for understanding past, present and future changes in the climate system and its impacts. ESMs are, however, subject to systematic errors and biases, which are not fully taken into account when developing risk scenarios for wild fire activity. Projections of climate-driven fire danger have often been limited to the use of single models or the mean of multi-model ensembles, and compared to a single set of observational data (e.g. one index derived from one reanalysis).&lt;/p&gt;&lt;p&gt;Here, a comprehensive global evaluation of the representation of a series of fire weather indicators in the latest generation of ESMs is presented. Seven fire weather indices from the Canadian Forest Fire Weather Index System were generated using daily fields realisations simulated by 25 ESMs from the 6&lt;sup&gt;th&lt;/sup&gt; Coupled Model Intercomparison Project (CMIP6). With reference to observational and reanalysis datasets, we quantify the capacity of each model to realistically simulate the variability, magnitude and spatial extent of fire danger. The highest-performing models are identified and, subsequently, the limitations of combining models based on independency and equal performance when generating fire danger projections are discussed. To conclude, recommendations are given for the development of user- and policy-driven model evaluation at spatial scales relevant for decision-making and forest management.&lt;/p&gt;


2021 ◽  
Author(s):  
Alexey V. Eliseev ◽  
Rustam D. Gizatullin ◽  
Alexandr V. Timazhev

&lt;p&gt;A stationary, computationally efficient &amp;#160;scheme, ChAP-1.0 (Chemistry and Aerosol Processes, version 1.0) for the sulphur cycle in the troposphereis developed. This scheme is envisaged to be implemented into Earth system models of intermediate complexity (EMICs). The scheme accounts for sulphur dioxide emissions into the atmosphere, its deposition to the surface, oxidation to sulphates, and dry and wet deposition of sulphates on the surface.&lt;br&gt;The calculations with the scheme were performed with the anthropogenic emissions of sulphur compounds into the atmosphere for 1850-2000 according to the CMIP5 (Coupled Models Intercomparison Project, phase 5) 'historical' protocol, with the ERA-Interim meteorology, and assuming that natural sources of sulphur into the atmosphere remain unchanged during this period. The model reasonably reproduces characteristics of the tropospheric sulphur cycle known from observations and other simulations (e.g., in the Atmospheric Chemistry and Climate Model Intercomparison Project phase II (ACCMIP) simulations, Copernicus Atmosphere Monitoring Service (CAMS) reanalysis, and the Meteorological Synthesizing Centre&amp;#8211;West of the European Monitoring and Evaluation Programme (EMEP MSC-W) data). In particular, in 1980's and 1990's, , when the global anthropogenic emission of sulphur, global atmospheric burdens of SO&lt;sub&gt;2&lt;/sub&gt; and SO&lt;sub&gt;4&lt;/sub&gt; account, correspondingly, 0.2 TgS and 0.4 TgS. In our scheme, about half of the emitted sulphur dioxide is deposited to the surface and the rest in oxidised into sulphates. The latter mostly removed from the atmosphere by wet deposition. The lifetime of the SO&lt;sub&gt;2&lt;/sub&gt; and SO&lt;sub&gt;4&lt;/sub&gt; in the atmosphere is, respectively, 1.0&amp;#177;0.1 days and 4.1&amp;#177;0.3 days.&lt;br&gt;Despite its simplicity, our scheme may be successfully used to simulate sulphur/sulphates pollution in the atmosphere at coarse spatial and time scales and an impact of this pollution to direct radiative effect of sulphates on climate, their respective indirect (cloud- and precipitation-related) effects, as well as an impact of sulphur compounds on the terrestrial carbon cycle.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document