Large-scale crust formation and lithosphere modification beneath Middle to Late Cenozoic calderas and volcanic fields, western North America

1991 ◽  
Vol 96 (B8) ◽  
pp. 13485-13507 ◽  
Author(s):  
Clark M. Johnson
PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0226318
Author(s):  
Elizabeth A. Wommack ◽  
Lisa C. Marrack ◽  
Stefania Mambelli ◽  
Joshua M. Hull ◽  
Todd E. Dawson

The large-scale patterns of movement for the Sharp-shinned Hawk (Accipiter striatus), a small forest hawk found throughout western North America, are largely unknown. However, based on field observations we set out to test the hypothesis that juvenile migratory A. striatus caught along two distinct migration routes on opposite sides of the Sierra Nevada Mountains of North America (Pacific Coast and Intermountain Migratory Flyways) come from geographically different natal populations. We applied stable isotope analysis of hydrogen (H) and oxygen (O) of feathers, and large scale models of spatial isotopic variation (isoscapes) to formulate spatially explicit predictions of the origin of the migrant birds. Novel relationships were assessed between the measured hydrogen and oxygen isotope values of feathers from A. striatus museum specimens of known origin and the isoscape modeled hydrogen and oxygen isotope values of precipitation at those known locations. We used these relationships to predict the origin regions for birds migrating along the two flyways from the measured isotope values of migrant’s feathers and the associated hydrogen and oxygen isotopic composition of precipitation where these feathers were formed. The birds from the two migration routes had overlap in their natal/breeding origins and did not differentiate into fully separate migratory populations, with birds from the Pacific Coast Migratory Flyway showing broader natal geographic origins than those from the Intermountain Flyway. The methodology based on oxygen isotopes had, in general, less predictive power than the one based on hydrogen. There was broad agreement between the two isotope approaches in the geographic assignment of the origins of birds migrating along the Pacific Coast Flyway, but not for those migrating along the Intermountain Migratory Flyway. These results are discussed in terms of their implications for conservation efforts of A. striatus in western North America, and the use of combined hydrogen and oxygen stable isotope analysis to track the movement of birds of prey on continental scales.


2005 ◽  
Vol 18 (8) ◽  
pp. 1136-1155 ◽  
Author(s):  
Iris T. Stewart ◽  
Daniel R. Cayan ◽  
Michael D. Dettinger

Abstract The highly variable timing of streamflow in snowmelt-dominated basins across western North America is an important consequence, and indicator, of climate fluctuations. Changes in the timing of snowmelt-derived streamflow from 1948 to 2002 were investigated in a network of 302 western North America gauges by examining the center of mass for flow, spring pulse onset dates, and seasonal fractional flows through trend and principal component analyses. Statistical analysis of the streamflow timing measures with Pacific climate indicators identified local and key large-scale processes that govern the regionally coherent parts of the changes and their relative importance. Widespread and regionally coherent trends toward earlier onsets of springtime snowmelt and streamflow have taken place across most of western North America, affecting an area that is much larger than previously recognized. These timing changes have resulted in increasing fractions of annual flow occurring earlier in the water year by 1–4 weeks. The immediate (or proximal) forcings for the spatially coherent parts of the year-to-year fluctuations and longer-term trends of streamflow timing have been higher winter and spring temperatures. Although these temperature changes are partly controlled by the decadal-scale Pacific climate mode [Pacific decadal oscillation (PDO)], a separate and significant part of the variance is associated with a springtime warming trend that spans the PDO phases.


2019 ◽  
Author(s):  
Elizabeth A. Wommack ◽  
Lisa C. Marrack ◽  
Stefania Mambelli ◽  
Joshua M. Hull ◽  
Todd E. Dawson

AbstractThe large-scale patterns of movement for the Sharp-shinned Hawk (Accipiter striatus), a small forest hawk found throughout western North America, are largely unknown. However, based on field observations we set out to test the hypothesis that juvenile migratory A. striatus caught along two distinct migration routes on opposite sides of the Sierra Nevada Mountains of North America (Pacific Coast and Intermountain Migratory Flyways) come from geographically different natal populations. We applied stable isotope analysis of hydrogen (H) and oxygen (O) of feathers, and large scale models of spatial isotopic variation (isoscapes) to formulate spatially explicit predictions of the origin of the migrant birds. Novel relationships were assessed between the measured hydrogen and oxygen isotope values of feathers from A. striatus museum specimens of known origin and the isoscape modeled hydrogen and oxygen isotope values of precipitation at those known locations. We used these relationships to predict the origin regions for birds migrating along the two flyways from the measured isotope values of migrant’s feathers and the associated hydrogen and oxygen isotopic composition of precipitation where these feathers were formed. The birds from the two migration routes had overlap in their natal/breeding origins and did not differentiate into fully separate migratory populations, with birds from the Pacific Coast Migratory Flyway showing broader natal geographic origins then those from the Intermountain Flyway. The methodology based on oxygen isotopes had, in general, less predictive power than the one based on hydrogen. There was broad agreement between the two isotope approaches in the geographic assignment of the origins of birds migrating along the Pacific Coast Flyway, but not for those migrating along the Intermountain Migratory Flyway. These results are discussed in terms of their implications for conservation efforts of A. striatus in western North America, and the use of combined hydrogen and oxygen stable isotope analysis to track the movement of birds of prey on continental scales.


2006 ◽  
Vol 36 (5) ◽  
pp. 1299-1318 ◽  
Author(s):  
Jim Schieck ◽  
Samantha J Song

Within boreal forests of western North America, the dominant large-scale natural disturbance is wildfire. Thus, harvesting that is as similar as possible to fire is expected to best maintain natural bird communities. We reviewed studies of birds (mainly grouse, woodpeckers, and songbirds) from boreal forests of western North America and conducted meta-analyses to compare the similarity of bird communities occurring postfire versus postharvest. We compared the bird communities at five seral stages and also summarized the effects of retaining large live trees at harvest. Bird communities immediately postharvest differed greatly from those postfire. Differences between disturbance types disappeared as the forest regenerated, and both disturbance types became dominated by relatively few bird species in 31- to 75-year-old forests. During the period 76–125 years postdisturbance, old-forest birds became present and bird species richness increased. However, the trajectory of forest succession during this period influenced bird communities; old aspen (Populus tremuloides Michx.), old mixedwood, and old white spruce (Picea glauca Moench (Voss)) forests all had different bird communities. Retention of large live trees in cutblocks resulted in their use by many old-forest birds, but results were not consistent among studies. Although most bird species had clear peaks in abundance in a specific forest type, no species with more than five detections was limited to a single forest type.


2013 ◽  
Vol 16 (3) ◽  
pp. 397-426
Author(s):  
Alejandro Cristín ◽  
María Del Carmen Perrilliat

1995 ◽  
Vol 32 (4) ◽  
pp. 460-471 ◽  
Author(s):  
Robert A. Creaser

Mesoproterozoic felsic magmatism of the Gawler Range Volcanics and Hiltaba Suite granites occurred at 1585–1595 Ma across much of the Gawler Craton, South Australia. Nd isotopic analysis of this felsic magmatism, combined with petrological and geochemical arguments, suggest derivation by partial melting of both Paleoproterozoic and Archean crust. The majority of samples analyzed have Nd isotopic and geochemical characteristics compatible with the involvement of Paleoproterozoic crust stabilized during the 1.85–1.71 Ga Kimban orogeny as sources for the Mesoproterozoic magmatism; others require derivation from sources dominated by Archean rocks. This cycle of Paleoproterozoic crustal stabilization followed by involvement of this crust Mesoproterozoic felsic magmatism is one previously documented from many parts of Mesoproterozoic Laurentia. On the basis of models proposing East Australia–Antarctica to be the conjugate landmass at the rifted margin of western North America, it appears that the voluminous magmatism of South Australia is another example of a typically Mesoproterozoic style of magmatism linked to Laurentia. This Mesoproterozoic magmatism appears temporally linked to regional high-temperature, low-pressure metamorphism of the region, and together with the presence of mantle-derived magmas, implicates the operation of large-scale tectono-thermal processes in the origin of felsic magmatism at 1590 Ma.


Sign in / Sign up

Export Citation Format

Share Document