scholarly journals Atmospheric gravity waves from the impact of comet Shoemaker-Levy 9 with Jupiter

1994 ◽  
Vol 21 (11) ◽  
pp. 1083-1086 ◽  
Author(s):  
A. P. Ingersoll ◽  
H. Kanamori ◽  
T. E. Dowling
2020 ◽  
Vol 25 (4) ◽  
pp. 290-307
Author(s):  
Y. Luo ◽  
◽  
L. F. Chernogor ◽  

Purpose: Acoustic and atmospheric gravity waves (AAGW) are generated by many natural and anthropogenic sources. The AAGW propagation at ionospheric heights is accompanied by the generation of disturbances in the magnetic and electric fields. The plasma presence plays a crucial role. The mechanisms for generating electrical and magnetic disturbances in the near-Earth atmosphere by the AAGW have been studied much worse. Therefore, the validation of the capability to generate electromagnetic disturbances in the near-Earth atmosphere by the AAGW is an urgent problem. The purpose of this paper is to describe the mechanism for generating disturbances in the electric and magnetic fields in the near-Earth atmosphere under the action of AAGW and to estimate the amplitudes of these disturbances for various AAGW sources. Design/methodology/approach: The impact of a series of highenergy sources often results in the generation of synchronous disturbances in the acoustic and geoelectric (atmospheric) fields, when an approximate proportionality between the pressure amplitude and the amplitude of the disturbances in the atmospheric electric field is observed to occur. Based on the observational data and making use of the Maxwell equations, the theoretical estimates of the disturbances in the electric and magnetic fields have been obtained. Findings: Simplified expressions have been obtained for estimating the amplitudes of the electric and magnetic fields under the action of the AAGW generated by natural and manmade sources. The amplitudes of the electric and magnetic fields generated by the AAGW of natural and manmade origin, which travel in the near-Earth atmosphere, have been calculated. The amplitudes of the AAGW generated electric and magnetic fields are shown to be large enough to be detected with the existing electrometers and fluxmeter magnetometers. The magnitudes of the amplitudes of the electric and magnetic fields generated in the near-Earth atmosphere under the action of AAGW are large enough to trigger coupling between the subsystems in the Earth–atmosphere–ionosphere–magnetosphere system. Conclusions: The estimates and not numerous observations are in good agreement. Key words: acoustic and atmospheric gravity waves, near-Earth atmosphere, volume charge, atmospheric pressure disturbances, electric field, magnetic field


2007 ◽  
Vol 7 (5) ◽  
pp. 625-628 ◽  
Author(s):  
A. Rozhnoi ◽  
M. Solovieva ◽  
O. Molchanov ◽  
P.-F. Biagi ◽  
M. Hayakawa

Abstract. We analyze variations of the LF subionospheric signal amplitude and phase from JJY transmitter in Japan (F=40 kHz) received in Petropavlovsk-Kamchatsky station during seismically quiet and active periods including also periods of magnetic storms. After 20 s averaging, the frequency range of the analysis is 0.28–15 mHz that corresponds to the period range from 1 to 60 min. Changes in spectra of the LF signal perturbations are found several days before and after three large earthquakes, which happened in November 2004 (M=7.1), August 2005 (M=7.2) and November 2006 (M=8.2) inside the Fresnel zone of the Japan-Kamchatka wavepath. Comparing the perturbed and background spectra we have found the evident increase in spectral range 10–25 min that is in the compliance with theoretical estimations on lithosphere-ionosphere coupling by the Atmospheric Gravity Waves (T>6 min). Similar changes are not found for the periods of magnetic storms.


1997 ◽  
Vol 15 (8) ◽  
pp. 1048-1056 ◽  
Author(s):  
R. L. Balthazor ◽  
R. J. Moffett

Abstract. A global coupled thermosphere-ionosphere-plasmasphere model is used to simulate a family of large-scale imperfectly ducted atmospheric gravity waves (AGWs) and associated travelling ionospheric disturbances (TIDs) originating at conjugate magnetic latitudes in the north and south auroral zones and subsequently propagating meridionally to equatorial latitudes. A 'fast' dominant mode and two slower modes are identified. We find that, at the magnetic equator, all the clearly identified modes of AGW interfere constructively and pass through to the opposite hemisphere with unchanged velocity. At F-region altitudes the 'fast' AGW has the largest amplitude, and when northward propagating and southward propagating modes interfere at the equator, the TID (as parameterised by the fractional change in the electron density at the F2 peak) increases in magnitude at the equator. The amplitude of the TID at the magnetic equator is increased compared to mid-latitudes in both upper and lower F-regions with a larger increase in the upper F-region. The ionospheric disturbance at the equator persists in the upper F-region for about 1 hour and in the lower F-region for 2.5 hours after the AGWs first interfere, and it is suggested that this is due to enhancements of the TID by slower AGW modes arriving later at the magnetic equator. The complex effects of the interplays of the TIDs generated in the equatorial plasmasphere are analysed by examining neutral and ion winds predicted by the model, and are demonstrated to be consequences of the forcing of the plasmasphere along the magnetic field lines by the neutral air pressure wave.


Nature ◽  
1973 ◽  
Vol 246 (5433) ◽  
pp. 412-413 ◽  
Author(s):  
J. E. BECKMAN ◽  
J. I. CLUCAS

2021 ◽  
Author(s):  
Francisco Brasil ◽  
Pedro Machado ◽  
Gabriella Gilli ◽  
Alejandro Cardesín-Moinelo ◽  
José E. Silva ◽  
...  

2018 ◽  
Vol 13 (4) ◽  
pp. 36
Author(s):  
Ranis Ibragimov ◽  
Pirooz Mohazzabi ◽  
Rebecca Roembke ◽  
Justin Van Ee

We examine stability of the vortex that represents one particular class of exact solution of a a nonlinear shallow water model describing atmospheric gravity waves circulating in an equatorial plane of a spherical planet. The mathematical model is represented by a two-dimensional free boundary Cauchy–Poisson problem on the nonstationary motion of a perfect uid around a solid circle with a sufficiently large radius so that the gravity is directed to the center of the circle. It is shown that the model admits two functionally independent nonlinear systems of shallow water equations. Two essential parameters that control stability of the vortex for both systems are identified. The order of their importance is analyzed and it is shown that one of the systems is more resistant to small perturbations and remains stable for larger range of these two parameters.


2017 ◽  
Vol 65 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Iael Perez ◽  
Dragani Walter

Abstract There are some observational evidences which support that atmospheric gravity waves constitute an efficient forcing for meteorological tsunamis (meteotsunamis) along the coast of Buenos Aires, Argentina. Meteotsunamis and atmospheric gravity waves, which propagate simultaneously on the sea surface and the atmosphere, respectively, are typical examples of non-stationary geophysical signals. The variability of meteotsunamis and atmospheric gravity waves recorded at Mar del Plata was investigated in this paper. Results obtained in this work reinforce the idea of a cause (atmospheric gravity waves) effect (meteotsunami) relationship, because wavelet spectra obtained from both signals resulted quite similar. However, several very short episodes of mod-erate/low activity of atmospheric gravity waves were detected without detecting meteotsunami activity. On the other hand, it was found that atmospheric gravity wave spectral energy can appear in the wavelets as a single or multiple burst as relatively long and irregular events or as regular wave packets. Results obtained in this paper provide original spectral data about atmospheric gravity waves along the coast of Buenos Aires. This information is useful to be included in realistic numerical models in order to investigate the genesis of this complex atmosphere-ocean interaction.


Sign in / Sign up

Export Citation Format

Share Document