Constraints on partial melting imposed by rare earth element variations in Mauna Kea basalts

1996 ◽  
Vol 101 (B5) ◽  
pp. 11815-11829 ◽  
Author(s):  
Mark D. Feigenson ◽  
Lina C. Patino ◽  
Michael J. Carr
2019 ◽  
pp. 87-114
Author(s):  
A. V. Moiseev ◽  
M. V. Luchitskaya ◽  
I. V. Gul’pa ◽  
V. B. Khubanov ◽  
B. V. Belyatsky

Vendian and Permian-Triassic plagiogranite magmatism is distinguished for Ust’-Belsky and Algansky terranes of West-Koryak fold system. U–Pb zircon ages from Vendian and Permian-Triassic plagiogranites are 556 ± 3 Ma (SIMS), 538 ± 7 Ma (LA–ICP–MS) and 235 ± 2 Ma (SIMS) consequently. It is revealed, that Vendian and Permian-Triassic plagiogranites are mainly low-K and low-Al. Sr–Nd isotopy and rare-earth element patterns allow supposing their formation by partial melting of primarily mantle substrate or by fractional crystallization of basic magma. Vendian plagiogranites formed within active margin in ensimatic island arc simultaneously with deposition of lower part of volcanic-sedimentary complex of Otrozhninskaya slice. We suggest the Permian-Triassic plagiogranites were being formed within the limits of Ust’-Belsky segment of Koni-Taigonos arc during partial melting of melanocratic ophiolite material build up as fragments in accretionary structure of that arc or by fractional crystallization of basic magmas melted from the similar substrate.


1994 ◽  
Vol 31 (5) ◽  
pp. 852-864 ◽  
Author(s):  
J. R. Riehle ◽  
J. R. Budahn ◽  
M. A. Lanphere ◽  
D. A. Brew

Pleistocene basalt of the Mount Edgecumbe volcanic field (MEF) is subdivided into a plagioclase type and an olivine type. Olivine basalt crops out farther inboard from the nearby Fairweather transform than plagioclase basalt. Th/La ratios of plagioclase basalt are similar to those of mid-ocean-ridge basalt (MORB), whereas those of olivine basalt are of continental affinity. The olivine basalt has higher 87Sr/86Sr ratios than the plagioclase basalt.We model rare earth element (REE) contents of the olivine basalt, which resemble those of transitional MORB, by 10–15% partial melting of fertile spinel–plagioclase lherzolite followed by removal of 8–13% olivine. Normative mineralogy indicates melting in the spinel stability field. REE contents of an undersaturated basalt (sample 5L005) resemble those of Mauna Loa tholeiite and are modelled by 5–10% partial melting of fertile garnet lherzolite followed by 10% olivine removal. Plagioclase basalt resembles sample 5L005 in REE contents but is lower in other incompatible-element contents and 87Sr/86Sr ratios. Plagioclase basalt either originated in depleted garnet lherzolite or is a mixture of sample 5L005 and normal MORB; complex zoning of plagioclase and colinear Sc and Th contents are consistent with magma mixing.We conclude that olivine basalt originated in subcontinental spinel lherzolite and that plagioclase basalt may have originated in suboceanic lithosphere of the Pacific plate. Lithospheric melting seemingly requires vertical flow of mantle material, although there is no direct evidence at the MEF for crustal extension that might provide a mechanism for mantle advection. In any case, most MEF magmas are subalkaline because of moderately high degrees of partial melting at shallow depth.


2019 ◽  
Vol 157 (2) ◽  
pp. 173-200
Author(s):  
Wei Chen ◽  
Xinbiao Lü ◽  
Xiaofeng Cao ◽  
Wenjia Ai

AbstractIn the past ten years, a great deal of geological study has been reported on the magmatic rocks exposed in the central and western region of the Kuluketage Block, while similar research in the eastern region has rarely been reported. In this paper, we report zircon U–Pb geochronological, zircon Lu–Hf isotopic, whole-rock elemental and Sr–Nd–Pb isotopic data for the Dapingliang intermediate-acid intrusive rocks in the eastern Kuluketage Block, in order to evaluate its petrogenesis and tectonic significance. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating provided a weighted mean 206Pb/238U age of 735 ± 3 Ma for the albitophyre (D1), 717 ± 2 Ma for the granite porphyry (D2) and 721 ± 1 Ma for the diorite porphyrite (D3). Geochemical analyses reveal that D1 and D2 belong to Na-rich alkaline A-type granites, and D3 shows the features of high-K calc-alkaline I-type granite. D1 and D2 are characterized by light rare earth element (LREE) enrichment and relative depletion of high field strength element (HFSE), with relatively flat heavy rare earth element (HREE) patterns and obviously negative Eu anomalies. D3 is characterized by the enrichment of LREE and depletion of HFSE, with negative slope HREE patterns and slightly negative Eu anomalies. In tectonic discrimination diagrams, D1 and D2 fall in the within-plate granite (WPG) field, indicating a rift setting. Although D3 falls within the volcanic arc granite (VAG) field, it most likely formed in a rift setting, as inferred from its petrology, Sr–Nd–Hf isotopes and regional tectonic evolution. Based on pronounced εNd(t), εHf(t), Pb isotopic data, TDM2 and high (87Sr/86Sr)i and elemental compositions, D1 was derived from the partial melting of basement amphibolites of the old lower crust. D2 originated from a mixture of the old lower crust and depleted mantle-derived magmas and was dominated by partial melting of the basement amphibolites of the lower crust. D3 could have been formed by partial melting of K-rich hornblende in the lower crust. Combining previous studies, we think that the c. 745–710 Ma magmatic rocks were formed in a continental rift setting. A partial melting scheme, triggered by underplating of mantle plume-derived magmas, is proposed to interpret the formation of c. 745–710 Ma A-type and I-type granitoids, mantle-derived mafic dykes, bimodal intrusive rocks, adakitic granites and volcanic rocks. These magmatic activities were probably a reflection of the break-up of the Rodinia supercontinent.Highlights(1)Circa 720 Ma magmatism in the eastern Kuluketage Block.(2)Na-rich granite was derived from partial melting of basement amphibolites.(3)The c. 745–710 Ma magmatic rocks were formed in a continental rift setting.(4)The underplating of mantle plume-derived magmas is proposed.


The composition of the present-day upper crust, inferred from the uniformity of sedimentary rock r.e.e. (rare earth element) patterns, is close to that of granodiorite. A revised ‘andesite’ model is used to obtain total crustal composition. The lower crust is the composition remaining, assuming that the upper crust, one-third of the total, is derived from intracrustal partial melting. The upper-crustal r.e.e. pattern has pronounced Eu depletion (Eu/Eu* = 0.64), the lower-crustal pattern has Eu enrichment (Eu/Eu* = 1.17) and the total crust has no Eu anomaly relative to chondritic abundances. The Eu depletion in the upper crust is attributed to retention of Eu in plagioclase in the lower crust. Because plagioclase is not stable below 40 km (> 10 kbar), the anomaly is intracrustal in origin. The Archaean upper crust has a different r.e.e. pattern to that of the present-day upper crust, being lower in total r.e.e., and La/Yb ratios, and lacking an Eu anomaly. These data are used to infer the Archaean upper-crustal composition, which resembles that of the present-day total crust, except that Ni and Cr contents are higher. The Archaean crustal composition can be modelled by a mixture of tholeiites and tonalite trondhjemites. The latter have steep light r.e.e.-enriched-heavy r.e.e.-depleted patterns, consistent with equilibration with garnet and hence probable mantle derivation. There is little reason to suppose that the Archaean lower crust was different in composition from the upper crust, except locally where partial melting episodes occurred. The r.e.e. evidence is consistent with isotopic and geological evidence for a low continental growth rate in the early Archaean, a massive increase (to about 70% of the total crust) between about 3000 and 2500 Ma B.P. and a slow increase until the present day. The change from Archaean to post-Archaean r.e.e. patterns in the upper crust is not isochronous, but is reflected in the sedimentary rock r.e.e. patterns at differing times in different continents. On the basis of a model composition for the mantle, 36% of the potassium, 30% of uranium, 15% of lanthanum and 3 % of ytterbium are concentrated in the present continental crust. This enrichment is related to ionic size and valency differences from common mantle cations (e.g. Mg, Fe). Pre-3.9 Ga B.P. crusts were obliterated by meteorite bombardment. No geochemical evidence exists for primordial anorthositic, sialic or mafic crusts.


2016 ◽  
Author(s):  
Shayantani Ghosal ◽  
◽  
Sudha Agrahari ◽  
Debashish Sengupta

Sign in / Sign up

Export Citation Format

Share Document