First VHF radar observations of tropical latitude E-region field aligned irregularities

1996 ◽  
Vol 23 (25) ◽  
pp. 3683-3686 ◽  
Author(s):  
R. K. Choudhary ◽  
K. K. Mahajan ◽  
Sachchidanand Singh ◽  
Keshav Kumar ◽  
V. K. Anandan
2005 ◽  
Vol 23 (3) ◽  
pp. 773-779 ◽  
Author(s):  
A. K. Patra ◽  
S. Sripathi ◽  
P. B. Rao ◽  
K. S. V. Subbarao

Abstract. The first results of simultaneous observations made on the low-latitude field-aligned irregularities (FAI) using the MST radar located at Gadanki (13.5° N, 79.2° E, dip 12.5°) and the Es parameters using an ionosonde at a nearby station Sriharikota (13.7° N, 80.1° E, dip 12.6°) are presented. The observations show that while the height of the most intense radar echoes is below the virtual height of Es (h'Es) during daytime, it is found to be either below or above during nighttime. The strength of the FAI is better correlated with the top penetration frequency (ftEs) and the blanketing frequency (fbEs) during the night (r=0.4 in both cases) as compared to the day (r=0.35 and -0.04, respectively). Furthermore, the signal strength of FAI is reasonably correlated with (ftEs-fbEs) during daytime (r=0.59) while very poorly correlated during nighttime (r=0.18). While the radar observations in general appear to have characteristics close to that of mid-latitudes, the relationship of these with the Es parameters are poorer than that of mid-latitudes. The observations reported here, nevertheless, are quite consistent with the expectations based on the gradient drift instability mechanism.


2002 ◽  
Vol 29 (10) ◽  
pp. 137-1-137-4 ◽  
Author(s):  
A. K. Patra ◽  
S. Sripathi ◽  
V. Siva Kumar ◽  
P. B. Rao

2009 ◽  
Vol 27 (9) ◽  
pp. 3411-3419 ◽  
Author(s):  
S. Sridharan ◽  
A. K. Patra ◽  
N. Venkateswara Rao ◽  
G. Ramkumar

Abstract. Simultaneous observations of atmospheric sodium (Na) made by a resonance lidar and E-region field-aligned-irregularities (FAI) made by the Indian MST radar, both located at Gadanki (13.5° N, 79.2° E) and horizontal winds acquired by a SKiYMET meteor radar at Trivandrum (8.5° N, 77° E) are used to investigate the relationship among sodium layer, FAI and neutral winds in the mesosphere and lower thermosphere region. The altitudes and descent rates of higher altitude (~95 km) Na layer and FAI agree quite well. The descending structures of the higher altitude Na layer and FAI are found to be closely related to the diurnal tidal phase structure in zonal winds observed over Trivandrum. At lower altitudes, the descent rate of FAI is larger than that of Na layer and zonal tidal phase. These observations support the hypothesis that the metallic ion layers are formed by the zonal wind shear associated with tidal winds and subsequently get neutralized to manifest in the form of descending Na layers. The descending FAI echoing layers are manifestation of the instabilities setting in on the ionization layer. In the present observations, the altitudes of occurrence of Na layer and FAI echoes being low, we surmise that it is quite possible that the FAI echoes are due to the descent of already formed irregularities at higher altitudes.


2002 ◽  
Vol 29 (14) ◽  
pp. 41-1-41-4 ◽  
Author(s):  
A. K. Patra ◽  
P. B. Rao ◽  
V. K. Anandan ◽  
A. R. Jain ◽  
G. Viswanathan

2002 ◽  
Vol 20 (8) ◽  
pp. 1203-1212 ◽  
Author(s):  
J. L. Chau ◽  
R. F. Woodman ◽  
L. A. Flores

Abstract. We present a summary of the statistical characteristics of echoes from ionospheric (E- and F-region) field-aligned irregularities obtained with the Piura VHF radar. This radar is located at ~ 7.0° dip latitude, just outside the equatorial electrojet (EEJ) region. Our results are based on (1) intermittent observations made between 1991 and 1999 just few days a year, and (2) continuous observations made between January 2000 and June 2001. During most of the intermittent observations, simultaneous measurements of EEJ and equatorial spread F (ESF) irregularities were performed with the Jicamarca VHF radar. From the continuous measurements, we have obtained the diurnal and seasonal characteristics of a variety of parameters (percentage of occurrence, signal-to-noise ratio and/or Doppler velocities) from the lower and upper E-region irregularities and also from F-region irregularities over Piura. For example, we have found that (1) the E-region echoes are stronger and occur more frequently during local summer (i.e. between December and March); (2) between May and June, the E-region echoes are weaker and occur less frequently; moreover, during these months, a semidiurnal wave with large amplitudes is observed in the meridional wind (> 100 ms- 1); (3) there is vertical wavelength of about 20 km in the Doppler velocity, particularly after midnight; (4) the lower (upper) E-region Doppler velocities are influenced mainly by meridional winds (equatorial F-region vertical drifts). In addition, we have observed that the seasonal and daily occurrences of Piura F-region irregularities are similar to the occurrence of topside ESF irregularities over Jicamarca. The likelihood of occurrence of F-region irregularities over Piura and, therefore, topside ESF over Jicamarca is greater when there are no E-region irregularities over Piura. On the other hand, there is more probability of observing bottomtype/bottomside ESF irregularities over Jicamarca when E-region irregularities are observed over Piura.Key words. Ionosphere (ionospheric irregularities; equatorial ionosphere; instruments and techniques)


1988 ◽  
Vol 36 (4) ◽  
pp. 423-428 ◽  
Author(s):  
H Rishbeth ◽  
AP van Eyken ◽  
B S Lanchester ◽  
T Turunen ◽  
J Röttger ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document