Length of the Sea Ice Season in the Southern Ocean, 1988-1994

Author(s):  
Claire L. Parkinson
Keyword(s):  
1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2021 ◽  
pp. 1-6
Author(s):  
Hao Luo ◽  
Qinghua Yang ◽  
Longjiang Mu ◽  
Xiangshan Tian-Kunze ◽  
Lars Nerger ◽  
...  

Abstract To improve Antarctic sea-ice simulations and estimations, an ensemble-based Data Assimilation System for the Southern Ocean (DASSO) was developed based on a regional sea ice–ocean coupled model, which assimilates sea-ice thickness (SIT) together with sea-ice concentration (SIC) derived from satellites. To validate the performance of DASSO, experiments were conducted from 15 April to 14 October 2016. Generally, assimilating SIC and SIT can suppress the overestimation of sea ice in the model-free run. Besides considering uncertainties in the operational atmospheric forcing data, a covariance inflation procedure in data assimilation further improves the simulation of Antarctic sea ice, especially SIT. The results demonstrate the effectiveness of assimilating sea-ice observations in reconstructing the state of Antarctic sea ice, but also highlight the necessity of more reasonable error estimation for the background as well as the observation.


2021 ◽  
Author(s):  
Kelsey M Bisson ◽  
B. B. Cael
Keyword(s):  

1999 ◽  
Vol 104 (D4) ◽  
pp. 3925-3935 ◽  
Author(s):  
Adrian Hauser ◽  
Gerd Wendler ◽  
Ute Adolphs ◽  
Martin O. Jeffries

2018 ◽  
Vol 45 (13) ◽  
pp. 6566-6575 ◽  
Author(s):  
Mark Hague ◽  
Marcello Vichi
Keyword(s):  

2018 ◽  
Vol 12 (9) ◽  
pp. 3033-3044 ◽  
Author(s):  
Xiying Liu

Abstract. To study the influence of basal melting of the Ross Ice Shelf (BMRIS) on the Southern Ocean (ocean southward of 35∘ S) in quasi-equilibrium, numerical experiments with and without the BMRIS effect were performed using a global ocean–sea ice–ice shelf coupled model. In both experiments, the model started from a state of quasi-equilibrium ocean and was integrated for 500 years forced by CORE (Coordinated Ocean-ice Reference Experiment) normal-year atmospheric fields. The simulation results of the last 100 years were analyzed. The melt rate averaged over the entire Ross Ice Shelf is 0.25 m a−1, which is associated with a freshwater flux of 3.15 mSv (1 mSv = 103 m3 s−1). The extra freshwater flux decreases the salinity in the region from 1500 m depth to the sea floor in the southern Pacific and Indian oceans, with a maximum difference of nearly 0.005 PSU in the Pacific Ocean. Conversely, the effect of concurrent heat flux is mainly confined to the middle depth layer (approximately 1500 to 3000 m). The decreased density due to the BMRIS effect, together with the influence of ocean topography, creates local differences in circulation in the Ross Sea and nearby waters. Through advection by the Antarctic Circumpolar Current, the flux difference from BMRIS gives rise to an increase of sea ice thickness and sea ice concentration in the Ross Sea adjacent to the coast and ocean water to the east. Warm advection and accumulation of warm water associated with differences in local circulation decrease sea ice concentration on the margins of sea ice cover adjacent to open water in the Ross Sea in September. The decreased water density weakens the subpolar cell as well as the lower cell in the global residual meridional overturning circulation (MOC). Moreover, we observe accompanying reduced southward meridional heat transport at most latitudes of the Southern Ocean.


2000 ◽  
Vol 12 (4) ◽  
pp. 414-417 ◽  
Author(s):  
Harvey Marchant ◽  
Andrew Davidson ◽  
Simon Wright ◽  
John Glazebrook

The concentrations of viruses, bacteria, chroococcoid cyanobacteria and chlorophyll a were determined in surface waters of the Southern Ocean during spring. Viral concentrations declined southward from around 4 × 106 ml−1 near Tasmania to a minimum of around 1 × 106 ml−1 at the Polar Front. South of the Front, virus concentrations increased again, reaching around 4 × 106 ml−1 in the sea-ice zone south of 60°S. Bacterial concentration decreased southwards across the Southern Ocean from around 6.5 × 105 ml−1 near Tasmania to < 1.0 × 105 ml−1 in the sea-ice zone. Cyanobacteria accounted for < 8% of the prokaryotes. There was no significant relationship between viral abundance and eithercyanobacterial or chl a concentration. Viral and bacterial concentrations were not significantly correlated north (P {0.10 < r < 0.20}) or south (P {0.20 < r < 0.5}) of the Polar Front. The virus to bacteria ratio (VBR) was between 3 and 15 in the open ocean but varied between 15 and 40 in the sea-ice region. These virus concentrations and VBRs indicate that viruses are no less important in Southern Ocean ecosystems than elsewhere in the world's oceans.


Sign in / Sign up

Export Citation Format

Share Document