Effect of mantle structure on postglacial induced horizontal displacement

Author(s):  
Kim O'Keefe ◽  
Patrick Wu
Author(s):  
William P. Wergin ◽  
Eric F. Erbe

The eye-brain complex allows those of us with normal vision to perceive and evaluate our surroundings in three-dimensions (3-D). The principle factor that makes this possible is parallax - the horizontal displacement of objects that results from the independent views that the left and right eyes detect and simultaneously transmit to the brain for superimposition. The common SEM micrograph is a 2-D representation of a 3-D specimen. Depriving the brain of the 3-D view can lead to erroneous conclusions about the relative sizes, positions and convergence of structures within a specimen. In addition, Walter has suggested that the stereo image contains information equivalent to a two-fold increase in magnification over that found in a 2-D image. Because of these factors, stereo pair analysis should be routinely employed when studying specimens.Imaging complementary faces of a fractured specimen is a second method by which the topography of a specimen can be more accurately evaluated.


2014 ◽  
Vol 59 (4) ◽  
pp. 971-986 ◽  
Author(s):  
Krzysztof Tajduś

Abstract The paper presents the analysis of the phenomenon of horizontal displacement of surface induced by underground mining exploitation. In the initial part, the basic theories describing horizontal displacement are discussed, followed by three illustrative examples of underground exploitation in varied mining conditions. It is argued that center of gravity (COG) method presented in the paper, hypothesis of Awierszyn and model studies carried out in Strata Mechanics Research Institute of the Polish Academy of Sciences indicate the proportionality between vectors of horizontal displacement and the vector of surface slope. The differences practically relate to the value of proportionality coefficient B, whose estimated values in currently realized design projects for mining industry range between 0.23r to 0.42r for deep exploitations, whereas in the present article the values of 0.33r and 0.47r were obtained for two instances of shallow exploitation. Furthermore, observations on changes of horizontal displacement vectors with face advancement indicated the possibility of existence of COG zones above the mined-out field, which proved the conclusions of hitherto carried out research studies (Tajduś 2013).


2020 ◽  
Vol 11 (1) ◽  
pp. 40
Author(s):  
Yongjie Qi ◽  
Gang Wei ◽  
Feifan Feng ◽  
Jiaxuan Zhu

Sleeve valve pipe grouting, an effective method for reinforcing soil layers, is often employed to correct the deformation of subway tunnels. In order to study the effect of grouting on rectifying the displacement of existing tunnels, this paper proposes a mechanical model of the volume expansion of sleeve valve pipe grouting taking into consideration the volume expansion of the grouted soil mass. A formula for the additional stress on the soil layer caused by grouting was derived based on the principle of the mirror method. In addition, a formula for the horizontal displacement of a tunnel caused by grouting was developed through a calculation model of shearing dislocation and rigid body rotation. The results of the calculation method proposed herein were in good agreement with actual engineering data. In summary, enlarging the grouting volume within a reasonable range can effectively enhance the grouting corrective effect. Further, with an increase in the grouting distance, the influence of grouting gradually lessens. At a constant grouting length, setting the bottom of the grouting section at the same depth as the lower end of the tunnel can maximize the grouting corrective effect.


2021 ◽  
Vol 174 ◽  
pp. 282-303
Author(s):  
Edyta Puniach ◽  
Wojciech Gruszczyński ◽  
Paweł Ćwiąkała ◽  
Wojciech Matwij

Sign in / Sign up

Export Citation Format

Share Document