The Nature of Mining-Induced Horizontal Displacement of Surface on the Example of Several Coal Mines

2014 ◽  
Vol 59 (4) ◽  
pp. 971-986 ◽  
Author(s):  
Krzysztof Tajduś

Abstract The paper presents the analysis of the phenomenon of horizontal displacement of surface induced by underground mining exploitation. In the initial part, the basic theories describing horizontal displacement are discussed, followed by three illustrative examples of underground exploitation in varied mining conditions. It is argued that center of gravity (COG) method presented in the paper, hypothesis of Awierszyn and model studies carried out in Strata Mechanics Research Institute of the Polish Academy of Sciences indicate the proportionality between vectors of horizontal displacement and the vector of surface slope. The differences practically relate to the value of proportionality coefficient B, whose estimated values in currently realized design projects for mining industry range between 0.23r to 0.42r for deep exploitations, whereas in the present article the values of 0.33r and 0.47r were obtained for two instances of shallow exploitation. Furthermore, observations on changes of horizontal displacement vectors with face advancement indicated the possibility of existence of COG zones above the mined-out field, which proved the conclusions of hitherto carried out research studies (Tajduś 2013).

2021 ◽  
Author(s):  
George Barakos ◽  
Kirsi Luolavirta ◽  
Jari Joutsenvaara ◽  
Saija Luukkanen ◽  
Hannah Julia Puputti ◽  
...  

<p>Being at the phase of entering the new digital era, the mining industry is constantly facing challenges utilizing the introduction of data-oriented and multi-criteria decision-making concepts, demand for real-time solutions and need for experienced staff. Hence, lifelong updating of knowledge and skills of mining experts has become increasingly important and recognized worldwide as a challenge for developing a sustainable mining sector. It is also well acknowledged that an interdisciplinary understanding of mining professionals over the integrated mine value chain is expected to optimize the efficiency of operations and in turn, enhance the feasibility of mining projects.  Given also the nature of the vast majority of mining activities, practical know-how is of great importance. There are, however, very few opportunities around the world for hands-on training in real mining conditions, and even less so at actual mine sites.</p><p>Hence, the idea of transforming abandoned or closing mines into training facilities is becoming more and more attractive among mining industry professionals, academics and researchers. Nevertheless, the theory is far from practice, and such an endeavour is by no means easy. In this concept, the Pyhäsalmi Cu-Zn Mine, in northern Finland is shortly to cease its operations. New activities are being investigated for the post-usage of the mine site. This in mind, Callio has been established as an umbrella organization to offer opportunities for business, development and research projects in the existing unique mine environment. Accordingly, the MINETRAIN project was launched in 2018 to investigate the possibility of utilization of the Pyhäsalmi Mine site for the education of mining experts and students. As a training and educational facility, the Pyhäsalmi mine will provide a globally unique environment, with training possibilities covering topics over the entire Mine Life Cycle; from exploration to mine closure.</p><p>To test the feasibility of Pyhäsalmi mine as an educational and training site, two pilot training courses have been developed during the last two years in the context of MINETRAIN, namely Mine Life Cycle and Digital Life of a Mine. The participation was tremendous, and the feedback received from the trainees has been highly positive; the obtained worldwide attraction strongly implies a great interest among mining professionals in practical education. Hence, in this paper, the challenges faced and the lessons learnt from the organization of these pilot courses are discussed with respect to the viable transition of Pyhäsalmi mine to an educational and training underground facility.</p>


2021 ◽  
Vol 174 ◽  
pp. 282-303
Author(s):  
Edyta Puniach ◽  
Wojciech Gruszczyński ◽  
Paweł Ćwiąkała ◽  
Wojciech Matwij

2020 ◽  
Vol 10 (20) ◽  
pp. 7221
Author(s):  
Łukasz Bołoz ◽  
Witold Biały

The article concerns the condition of automation and robotization of underground mining in Poland. Attention has been focused on the specific character of the mining industry. This limits the possibility of using robotization, and sometimes even the mechanization of certain processes. In recent years, robotic and automated machines and machine system solutions have been developed and applied in Poland. They are autonomous to a various degree, depending on the branch. The type of automation and artificial intelligence depends on the specific use. Some examples presently being used include the MIKRUS automated longwall system and autonomous device(s) for breaking rocks or mining rescue work. In Poland, fully automated plow systems produced by foreign companies are also used. Companies in Poland and international research centers are also actively engaged in the development of underwater and space mining. where robotization is of key importance. Research is also being undertaken by Robotics in Mining, euRobotics and PERASPERA as well as Space Mining Conference.


2015 ◽  
Vol 48 (17) ◽  
pp. 60-65
Author(s):  
Dipl.-Ing. Kai Neumann ◽  
Dipl.-Ing. Jan Berg ◽  
Gerhard Möllemann ◽  
Dr.-Ing. Karl Nienhaus

Author(s):  
Fred Turin ◽  
Lisa Steiner ◽  
Kim Cornelius

NIOSH researchers have been examining underground coal mining activities in order to evaluate work crew hazards. In 1994 a continuous mining machine operator was killed by falling roof during extended cut mining. Many aspects of the incident were used by NIOSH researchers to develop a scenario interview. The goal was to provide a realistic framework for acquiring frank and detailed insights. The interview consists of two sections. The first describes the underground mining conditions. The second recounts the fatal incident. Each section is supplemented by a diagram and a set of questions addressing relevant safety issues. The interview was administered at three mines that actively take extended cuts. Researchers found the scenario approach to be an effective interview tool as well as an effective hazard awareness and safe work practices training platform.


2019 ◽  
Vol 4 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Ngoc Minh Nguyen ◽  
Duc Thang Pham

Mineral demand rapidly increases; as a result, underground mining activities gradually dig into the earth’s crust to deeper levels. For instance, the depth of coal mines has reached 1500 m, whereas the depth of mines for nonferrous metals has already achieved around 4500 m. Deep mining faces a number of technical and environmental challenges, first of all, great rock mass stresses, high temperature and long winding distance. The traditional technologies are hardly capable to provide the development and extraction efficiency and safety. That is why the need in developing and implementation of new modern mining technologies arose. In roadheading, TBM (tunnelboring machine) method is gradually introduced. A TBM combines the functions of rock breaking, support installation, mucking and conveying rock. In mining industry, smart mining based on mechanized and automated mining methods is successfully implemented at coal mines. Besides, a technical concept of fluidized mining for deepseated mineral resources (6000 m and more) was proposed. This paper presents the review of the current global status of deep mining and highlights some of the newest technological achievements in roadheading and the mineral extraction processes.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Francis Frimpong ◽  
Kingsley Kwakye

The mining industry continues to be an important sector of the Ghanaian economy, contributing to the foreign exchange, employment and socioeconomic development after the colonial period. The current trend of mining operations requires greater skills and technical knowledge because they involve sophisticated machines, dangerous chemicals and explosive mechanisms, underground operations etc. Accidents in the mines just like any occupational accident may lead to deaths, injuries, disabilities and financial losses. One of the ways of improving occupational knowledge and skills is to acquire some level of understanding of accident causation mechanism. An analytical technique which will form the basis for accident and injury epidemiological studies is therefore necessary to ensure operational safety improvement. A retrospective statistical analysis of accidents in eight gold mining companies was undertaken through measures of association, hypothesis testing, trend analysis and predictive measurements. The results of the study indicate that 20% of accident cases resulted in deaths, 30% were serious and 50% minor accidents. Underground mining increases the risk fatal accident by 1.46, morning shift increases the risk of fatal accident by 4.81 and being a contract miner increases the risk of fatal accident by 1.05. The part of body injured can predict the degree of injury by reducing the error of prediction by 40.2%. Since proportion of accident fatalities increases with increasing age of miners, it is recommended that miners with higher age should not be task with high risk jobs. It is recommended again that, miners should be given improved protective clothes to guide against occurrences of fatal incidents. Especially, clothes to cover the head and upper part of the body since they top the fatality chart and the fact that fatality is strongly associated with body part. <p> </p><p><strong> Article visualizations:</strong></p><p><img src="/-counters-/edu_01/0720/a.php" alt="Hit counter" /></p>


Sign in / Sign up

Export Citation Format

Share Document