On the recent variations of the apparent westward drift rate

1983 ◽  
Vol 10 (5) ◽  
pp. 369-372 ◽  
Author(s):  
J. L. Le Mouël ◽  
J. Ducruix ◽  
C. Ha Duyen
Keyword(s):  
1999 ◽  
Vol 42 (1) ◽  
Author(s):  
D. R. Barraclough ◽  
S. R. C. Malin

he dominant feature in the magnetic declination record at all European sites for which adequate data are available is a minimum between 1750 and 1860. The time of minimum at different sites correlates well with longitude and implies a westward drift rate of 0.61 ± 0.08° yr-1. This is greatly in excess of the widely adopted value of 0.18° yr-1 for global westward drift.


1952 ◽  
Vol 1 (4) ◽  
pp. 53 ◽  
Author(s):  
De Lacy O'Leary
Keyword(s):  

2019 ◽  
Vol 884 (1) ◽  
pp. 14 ◽  
Author(s):  
Sofia Z. Sheikh ◽  
Jason T. Wright ◽  
Andrew Siemion ◽  
J. Emilio Enriquez
Keyword(s):  

2019 ◽  
Author(s):  
Imre M. Jánosi ◽  
Miklós Vincze ◽  
Gábor Tóth ◽  
Jason A. C. Gallas

Abstract. Empirical flow field data evaluation in a well studied ocean region along the U.S. West Coast revealed a surprisingly strong relationship between the surface integrals of kinetic energy and enstrophy (squared vorticity). This relationship defines a single isolated Gaussian super-vortex, whose fitted size parameter is related to the mean eddy size, and the square of the fitted height parameter is proportional to the sum of the square of all individual eddy amplitudes obtained by standard vortex census. This finding allows a very effective coarse-grained eddy statistics with minimal computational efforts. As an illustrative example, the westward drift velocity of eddies is determined from a simple cross correlation analysis of kinetic energy integrals.


2020 ◽  
Author(s):  
Nathan J. Evans

Evidence accumulation models (EAMs) – the dominant modelling framework for speeded decision-making – have become an important tool for model application. Model application involves using specific model to estimate parameter values that relate to different components of the cognitive process, and how these values differ over experimental conditions and/or between groups of participants. In this context, researchers are often agnostic to the specific theoretical assumptions made by different EAM variants, and simply desire a model that will provide them with an accurate measurement of the parameters that they are interested in. However, recent research has suggested that the two most commonly applied EAMs – the diffusion model and the linear ballistic accumulator (LBA) – come to fundamentally different conclusions when applied to the same empirical data. The current study provides an in-depth assessment of the measurement properties of the two models, as well as the mapping between, using two large scale simulation studies and a reanalysis of Evans (2020a). Importantly, the findings indicate that there is a major identifiability issue within the standard LBA, where differences in decision threshold between conditions are practically unidentifiable, which appears to be caused by a tradeoff between the threshold parameter and the overall drift rate across the different accumulators. While this issue can be remedied by placing some constraint on the overall drift rate across the different accumulators – such as constraining the average drift rate or the drift rate of one accumulator to have the same value in each condition – these constraints can qualitatively change the conclusions of the LBA regarding other constructs, such as non-decision time. Furthermore, all LBA variants considered in the current study still provide qualitatively different conclusions to the diffusion model. Importantly, the current findings suggest that researchers should not use the unconstrained version of the LBA for model application, and bring into question the conclusions of previous studies using the unconstrained LBA.


2017 ◽  
Author(s):  
Angel J. Gomez-Pelaez ◽  
Ramon Ramos ◽  
Emilio Cuevas ◽  
Vanessa Gomez-Trueba ◽  
Enrique Reyes

Abstract. At the end of 2015, a CO2/CH4/CO Cavity Ring-Down Spectrometer (CRDS) was installed at the Izaña Global Atmosphere Watch station (Tenerife, Spain) to improve the Izaña Greenhouse gases GAW measurement programme, and to guarantee the renewal of the instrumentation and the long-term maintenance of this programme. We present the results of the CRDS acceptance tests, the processing of raw data applied through novel numerical codes, and the response functions used. Also, the calibration results, the implemented water vapour correction, the target gas injection statistics, the ambient measurements performed from December 2015 to July 2017, and their comparison with other continuous in situ measurements are described. The agreement with other in situ continuous measurements is good most of the time for CO2 and CH4, but for CO is just outside the GAW 2-ppb objective. It seems the disagreement is not produced by significant drifts in the CRDS CO WMO tertiary standards. The main novelties are: 1) determination of a slight CO2 correction that takes into account changes in the inlet pressure/flow rate; 2) detailed justification of the use of virtual tanks to monitor the response function changes in time; 3) drift rate determination for the pressure and temperature sensors located inside the CRDS cavity; 4) novelties in the determination of the H2O correction for CO; and 5) determination and discussion of the origin of the CRDS-flow inlet pressure and H2O dependences.


2020 ◽  
Author(s):  
Catherine Manning ◽  
Eric-Jan Wagenmakers ◽  
Anthony Norcia ◽  
Gaia Scerif ◽  
Udo Boehm

Children make faster and more accurate decisions about perceptual information as they get older, but it is unclear how different aspects of the decision-making process change with age. Here, we used hierarchical Bayesian diffusion models to decompose performance in a perceptual task into separate processing components, testing age-related differences in model parameters and links to neural data. We collected behavioural and EEG data from 96 six- to twelve-year-olds and 20 adults completing a motion discrimination task. We used a component decomposition technique to identify two response-locked EEG components with ramping activity preceding the response in children and adults: one with activity that was maximal over centro-parietal electrodes and one that was maximal over occipital electrodes. Younger children had lower drift rates (reduced sensitivity), wider boundary separation (increased response caution) and longer non-decision times than older children and adults. Yet model comparisons suggested that the best model of children’s data included age effects only on drift rate and boundary separation (not non-decision time). Next we extracted the slope of ramping activity in our EEG components and covaried these with drift rate. The slopes of both EEG components related positively to drift rate, but the best model with EEG covariates included only the centro-parietal component. By decomposing performance into distinct components and relating them to neural markers, diffusion models have the potential to identify the reasons why children with developmental conditions perform differently to typically developing children - and to uncover processing differences inapparent in the response time and accuracy data alone.


Sign in / Sign up

Export Citation Format

Share Document