Methods for box models and ocean circulation tracers: Mathematical programing and nonlinear inverse theory

1982 ◽  
Vol 87 (C8) ◽  
pp. 5647 ◽  
Author(s):  
Carl Wunsch ◽  
Jean-François Minster
2018 ◽  
Author(s):  
Tyler Pelle ◽  
Mathieu Morlighem ◽  
Johannes H. Bondzio

Abstract. Basal melt at the bottom of Antarctic ice shelves is a major control on glacier dynamics, as it modulates the amount of buttressing that floating ice shelves exert onto the ice streams feeding them. Three-dimensional ocean circulation numerical models provide reliable estimates of basal melt rates but remain too computationally expensive for century scale projections. Ice sheet modelers therefore routinely rely on simplified parameterizations either based on ice shelf depth or on more sophisticated box models. However, existing parameterizations do not accurately resolve the complex spatial patterns of sub-shelf melt rates that have been observed over Antarctica's ice shelves, especially in the vicinity of the grounding line, where basal melt is one of the primary drivers of grounding line migration. In this study, we couple the Potsdam Ice-shelf Cavity mOdel (PICO) to a buoyant Plume melt rate parameterization to create PICOP, a novel basal melt rate parameterization that is easy to implement in transient ice sheet numerical models and produces a melt rate field that is in excellent agreement with the spatial distribution and magnitude of observations for a wide variety of ocean basins. We test PICOP on the Amundsen Sea sector of West Antarctica, Totten and Moscow University ice shelves in Eastern Antarctica, and the Ronne-Filchner ice shelf and compare the results to PICO. We find that PICOP is able to reproduce the high melt rates near the grounding lines of Pine Island, Thwaites, and Totten glaciers (on the order of 100 m/yr) and removes the “banding” pattern observed in melt rates produced by PICO over the Ronne-Filchner ice shelf. PICOP resolves many of the issues contemporary basal melt rate parameterizations face and is therefore a valuable tool for those looking to make future projections of Antarctic glaciers.


2019 ◽  
Vol 47 (3) ◽  
pp. 80-91
Author(s):  
V. G. Neiman

The main content of the work consists of certain systematization and addition of longexisting, but eventually deformed and partly lost qualitative ideas about the role of thermal and wind factors that determine the physical mechanism of the World Ocean’s General Circulation System (OGCS). It is noted that the conceptual foundations of the theory of the OGCS in one form or another are contained in the works of many well-known hydrophysicists of the last century, but the aggregate, logically coherent description of the key factors determining the physical model of the OGCS in the public literature is not so easy to find. An attempt is made to clarify and concretize some general ideas about the two key blocks that form the basis of an adequate physical model of the system of oceanic water masses motion in a climatic scale. Attention is drawn to the fact that when analyzing the OGCS it is necessary to take into account not only immediate but also indirect effects of thermal and wind factors on the ocean surface. In conclusion, it is noted that, in the end, by the uneven flow of heat to the surface of the ocean can be explained the nature of both external and almost all internal factors, in one way or another contributing to the excitation of the general, or climatic, ocean circulation.


2018 ◽  
Vol 6 (2) ◽  
Author(s):  
Arif Dwi Santoso

Seawater contains high amounts of organic material and ions causing high salinity.The distribution of nutrients in the ocean is determined by ocean circulation, biological processes of uptake and mineralization, and subsequent regeneration of nutrients by migration of animals and by supply from the land.Topic related to sea water is important to discuss and to be a challenging with many researchers in Indonesia. In this paper, organic mater from sea water was learned in detail. The information contained of formulation history, justifi cation, distribution, advantages, and method of measure, type and effect to environment.Keywords: organic material, sea water, dissolved


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


Tellus B ◽  
2006 ◽  
Vol 58 (3) ◽  
Author(s):  
J. Icarus Allen ◽  
Stephen D. Archer ◽  
Jerry C. Blackford ◽  
Francis J. Gilbert ◽  
Arnold H. Taylor
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document