Seismic reflection geometry of the Columbia River Fault Zone and East Margin of the Shuswap Metamorphic Complex in the Canadian Cordillera

Tectonics ◽  
1986 ◽  
Vol 5 (4) ◽  
pp. 669-685 ◽  
Author(s):  
Frederick A. Cook
2006 ◽  
Vol 43 (2) ◽  
pp. 213-244 ◽  
Author(s):  
P Glombick ◽  
R I Thompson ◽  
P Erdmer ◽  
L Heaman ◽  
R M Friedman ◽  
...  

The Aberdeen gneiss complex is composed of complexly deformed migmatitic orthogneiss and paragneiss situated within the core of the Vernon antiform, a structure defined by a series of subparallel reflectors visible at upper to middle crustal depths (6–18 km) in seismic reflection data from the Vernon area of the Shuswap metamorphic complex. The Vernon antiform and the Aberdeen gneiss complex lie within the footwall of the gently west dipping (top to the west) Kalamalka Lake shear zone. Migmatitic gneiss exposed within the antiform records evidence (recorded as age domains in complexly zoned zircon grains) of three metamorphic events, occurring at 155–150, 90, and 66–51 Ma. The timing of magmatic events within the antiform includes emplacement of diorite at ~232 Ma, tonalite at ~151 Ma, granodiorite at 102 Ma, and monzonite at 52 Ma. Middle to Late Jurassic metamorphism resulted in widespread migmatization. Early Tertiary metamorphism (66–51 Ma) was coeval with the emplacement of granitic rocks and exhumation typical of other areas of the Shuswap metamorphic complex. Highly deformed orthogneiss situated within the hanging wall of the Kalamalka Lake shear zone, comprising the superstructure, was emplaced at ~171 Ma. Ductile deformation had ceased by 162 Ma. The complex metamorphic and magmatic evolution of the Vernon antiform, which is similar to other areas of the southern Canadian Cordillera including the Nicola horst, Mount Lytton – Eagle plutonic complex, Cariboo Mountains, and Mica Creek area, may reflect episodic tectonic activity at the plate margin.


1984 ◽  
Vol 21 (5) ◽  
pp. 584-598 ◽  
Author(s):  
Larry S. Lane

The brittle Columbia River fault zone forms part of the eastern margin of the Shuswap Metamorphic Complex, and for much of its 230 km length it coincides with the eastern exposure of the ductile Monashee décollement. The Eocene brittle fracturing and displacement are broadly parallel with, but cut and disrupt the middle Jurassic ductile mylonite zone. Excavations for a hydroelectric dam and a highway have facilitated a detailed analysis of fracture patterns at several localities along the fractured zone.Regionally, the brittle fault zone strikes 350° (locally 310–030°) and dips shallowly eastward. Over most of the studied part of the zone, the distributions of subsidiary fractures and displacement vectors demonstrate a normal dip-slip displacement consistent with subhorizontal east–west extension within the fractured zone, irrespective of the local trend of the zone. At Revelstoke damsite, where the zone trends 030° for 2 km, motion was towards the southeast, possibly indicating a localized clockwise rotation postdating dip-slip displacement.Fractures preserving both early dip-slip vectors and later strike-slip vectors demonstrate that minor north–south, strike-slip motion was superimposed on all parts of the zone, though no throughgoing strike-slip fault formed.In the damsite excavation, the fractured zone is largely confined to mylonites derived from footwall terrane. The Tertiary brittle offset was minor by comparison with the Jurassic ductile displacement.


1996 ◽  
Vol 33 (11) ◽  
pp. 1570-1582 ◽  
Author(s):  
J. L. Crowley ◽  
E. D. Ghent ◽  
R. L. Brown

New and previously published metamorphic data suggest that the Clachnacudainn terrane of the southern Omineca Belt has tectonic affinities with the overlying Selkirk allochthon, rather than the underlying Shuswap metamorphic complex. This interpretation is based on relationships between metamorphic minerals and deformation phases, plutons, and the upper boundary of the terrane, the Standfast Creek fault. Regional kyanite and staurolite zones in the structurally lowest part of the terrane are overlain by a garnet zone that is continuous upward across the Standfast Creek fault into the Selkirk allochthon. This metamorphism is inferred to be Jurassic age based mainly on the continuity of these zones with those of known age in the allochthon. Textural relationships show that metamorphism occurred at different times relative to deformation across the terrane. Thermobarometry and a petrogenetic grid indicate that the terrane attained lower to middle amphibolitc facies conditions. Sillimanite and andalusite zones in the contact aureoles of posttectonic mid-Cretaceous plutons overprint the regional metamorphic zones and the Standfast Creek fault. Comparison of estimated pressures shows that approximately 5–10 km of exhumation occurred between regional and contact metamorphism. These metamorphic data are interpreted to indicate that the Standfast Creek fault had minor displacement after regional metamorphism and negligible displacement after contact metamorphism. Therefore, the fault cannot be an Eocene ductile to ductile–brittle shear zone that appressed or omitted metamorphic isograds and rapidly exhumed the Clachnacudainn terrane in its footwall, as was previously proposed.


2009 ◽  
Author(s):  
Ray W. Sliter ◽  
Peter J. Triezenberg ◽  
Patrick E. Hart ◽  
Janet T. Watt ◽  
Samuel Y. Johnson ◽  
...  

1981 ◽  
Vol 18 (1) ◽  
pp. 13-25 ◽  
Author(s):  
A. G. Green

Approximately 11 km of four-fold common reflection point data have been recorded across a region that spans the contact fault zone between the Thompson nickel belt and the Churchill Tectonic Province. From these data it is shown that the upper crust in this region and, to a lesser extent, the lower crust are characterized by numerous scattered events that originate from relatively small-scale features. Within the Thompson nickel belt two extensive and particularly high-amplitude reflection zones, at two-way travel times of t = 5.0–5.5 s and t = 6.0–6.5 s, are recorded with apparent northwesterly dips of 0–20 °C. These reflection zones, which have a laminated character, are truncated close to the faulted contact with the Churchill Province. Both the contact fault zone and the Churchill Province in this region have crustal sections that are relatively devoid of significant reflectors. The evidence presented here confirms that the crustal section of the Thompson nickel belt is fundamentally different from that of the Churchill Tectonic Province.


1983 ◽  
Vol 73 (6A) ◽  
pp. 1701-1720
Author(s):  
R. Feng ◽  
T. V. McEvilly

Abstract A seismic reflection profile crossing the San Andreas fault zone in central California was conducted in 1978. Results are complicated by the extreme lateral heterogeneity and low velocities in the fault zone. Other evidence for severe lateral velocity change across the fault zone lies in hypocenter bias and nodal plane distortion for earthquakes on the fault. Conventional interpretation and processing methods for reflection data are hard-pressed in this situation. Using the inverse ray method of May and Covey (1981), with an initial model derived from a variety of data and the impedance contrasts inferred from the preserved amplitude stacked section, an iterative inversion process yields a velocity model which, while clearly nonunique, is consistent with the various lines of evidence on the fault zone structure.


2004 ◽  
Author(s):  
Theresa R. Rademacker ◽  
Richard D. Miller ◽  
Jamie L. Lambrecht ◽  
Charles Nichols ◽  
Jeffrey Beech

Sign in / Sign up

Export Citation Format

Share Document