Results of a seismic reflection survey across the fault zone between the Thompson nickel belt and the Churchill Tectonic Province, northern Manitoba

1981 ◽  
Vol 18 (1) ◽  
pp. 13-25 ◽  
Author(s):  
A. G. Green

Approximately 11 km of four-fold common reflection point data have been recorded across a region that spans the contact fault zone between the Thompson nickel belt and the Churchill Tectonic Province. From these data it is shown that the upper crust in this region and, to a lesser extent, the lower crust are characterized by numerous scattered events that originate from relatively small-scale features. Within the Thompson nickel belt two extensive and particularly high-amplitude reflection zones, at two-way travel times of t = 5.0–5.5 s and t = 6.0–6.5 s, are recorded with apparent northwesterly dips of 0–20 °C. These reflection zones, which have a laminated character, are truncated close to the faulted contact with the Churchill Province. Both the contact fault zone and the Churchill Province in this region have crustal sections that are relatively devoid of significant reflectors. The evidence presented here confirms that the crustal section of the Thompson nickel belt is fundamentally different from that of the Churchill Tectonic Province.

2020 ◽  
Vol 24 (6) ◽  
pp. 1175-1188
Author(s):  
Xiao-Ping Fan ◽  
Yi-Cheng He ◽  
Cong-Jie Yang ◽  
Jun-Fei Wang

AbstractBroadband teleseismic waveform data from 13 earthquakes recorded by 70 digital seismic stations were selected to evaluate the inhomogeneity parameters of the crustal medium in the southern Longmenshan fault zone and its adjacent regions using the teleseismic fluctuation wavefield method. Results show that a strong inhomogeneity exists beneath the study region, which can be divided into three blocks according to its structure and tectonic deformation features. These are known as the Sichuan-Qinghai Block, the Sichuan-Yunnan Block, and the Mid-Sichuan Block. The velocity fluctuation ratios of the three blocks are approximately 5.1%, 3.6%, and 5.1% in the upper crust and 5.1%, 3.8%, and 4.9% in the lower crust. The inhomogeneity correlation lengths of the three blocks are about 10.1 km, 14.0 km, and 10.7 km in the upper crust and 11.8 km, 17.0 km, and 11.8 km in the lower crust. The differences in the crustal medium inhomogeneity beneath the Sichuan-Yunnan Block, the Sichuan-Qinghai Block, and the Mid-Sichuan Block may be related to intensive tectonic movement and material flow in the crust and upper mantle.


1985 ◽  
Vol 22 (2) ◽  
pp. 141-153 ◽  
Author(s):  
S. L. Klemperer ◽  
L. D. Brown ◽  
J. E. Oliver ◽  
C. J. Ando ◽  
B. L. Czuchra ◽  
...  

COCORP deep seismic reflection profiling in the Adirondack Mountains of northern New York State has revealed a prominent zone of layered reflectors in the lower crust of the east-central Adirondacks. The strong, layered reflectors (here termed the Tahawus complex) occur between 18 and 26 km depth, beneath the sparsely reflective, granulite-grade, surface terrane, which has been uplifted from depths greater than 20 km. The Tahawus complex apparently represents layered rocks of some type in the lower crust of the Adirondacks. Possibilities include gneissic layering, cumulate igneous layering, a layered sill complex, and underthrust sedimentary strata, The Tahawus complex may be spatially coincident with a previously detected, high-conductivity zone in the lower crust, suggesting that either unusual mineralogies or interstitial electrolytes are present in the Tahawus complex. In contrast to layered reflections discovered in the lower crust of the east-central Adirondacks and southeast of the Adirondacks, cross-cutting and discontinuous reflections are recorded from the upper crust on all the COCORP Adirondack lines, including lines in both the Adirondack Highlands and Lowlands. Available three-dimensional control suggests that reflections in the upper crust of the central Adirondacks are parallel to, and hence may be related to, the folded gneisses mapped at the surface. Shallow events are also observed on a COCORP profile close to the epicenter of the 7 October 1983 magnitude 5.2 earthquake in the central Adirondacks, but their relation to the earthquake is uncertain.


1992 ◽  
Vol 29 (9) ◽  
pp. 1865-1877 ◽  
Author(s):  
Garry M. Quinlan ◽  
Jeremy Hall ◽  
Harold Williams ◽  
James A. Wright ◽  
Stephen P. Colman-Sadd ◽  
...  

Vibroseis seismic reflection data have been recorded to 18 s two-way traveltime along three transects across the island of Newfoundland. The upper crust has both steep and subhorizontal reflectors consistent with a ramp–flat style of deformation, whereas the middle and lower crust are largely free of regional flats. Reflectors descend through ca. 20 km of vertical section in the middle and lower crust to flatten into the Moho or perhaps cut through it in places. The Moho is interpreted to be no younger than the dipping reflectors. Reflection fabrics, interpreted to be indicators of dominantly Mid-Ordovician to Mid-Silurian strain, show consistent orientations among the transects and divide the crust into two blocks. A northwestern block is characterized by upper and middle crustal reflectors dipping mostly southeast at variable angles. This block is underlain to the southeast by supposedly younger and dominantly northwesterly dipping reflectors that define a northwest-tapering, wedge-shaped block floored by the Moho. This latter block is cut by isolated southeast-dipping, upper crustal reflectors near the southeast ends of the seismic transects. One of these reflectors is spatially correlated with the Bay d'Est Fault, on which the last ductile motion was south over north thrusting of Mid-Silurian age. The two crustal blocks are proposed to represent the Laurentian and Gondwanan plates juxtaposed during closure of the Iapetus Ocean. The Gondwanan plate appears to be underthrust westward beneath the Laurentian plate, perhaps by as much as 200 km.


2009 ◽  
Author(s):  
Ray W. Sliter ◽  
Peter J. Triezenberg ◽  
Patrick E. Hart ◽  
Janet T. Watt ◽  
Samuel Y. Johnson ◽  
...  

Tectonics ◽  
2008 ◽  
Vol 27 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
N. De Paola ◽  
C. Collettini ◽  
D. R. Faulkner ◽  
F. Trippetta

1990 ◽  
Vol 27 (8) ◽  
pp. 1048-1060 ◽  
Author(s):  
David W. S. Eaton ◽  
Frederick A. Cook

The Valhalla complex, situated in the Omineca crystalline belt in southeastern British Columbia, is a Cordilleran metamorphic core complex bordering the suture zone between Quesnellia and North American rocks. The region is tectonically interposed between a convergent plate margin along Canada's west coast and the stable North American craton, and is characterized by a crustal thickness of ~ 35 km, high surface heat flux, and elevated lower crustal electrical conductivity. In this study, Lithoprobe deep-crustal seismic-reflection data, potential-field data, and geological constraints have been used to gain a better understanding of crustal structure in the vicinity of the Valhalla complex. Analysis of Bouguer gravity and total-field aeromagnetic data indicates that mafic oceanic rocks and various syn- and post-accretionary granitoid plutonic rocks are not major constituents of the upper crust underlying the complex. The seismic data reveal a moderately reflective upper crust and image several fault zones, including a very high amplitude, west-dipping reflection that is interpreted as a significant Late Cretaceous or Paleocene thrust fault. The fault-zone reflectivity may be related to compositional heterogeneity and (or) seismic anisotropy associated with mylonites. The lower crust appears to be nonreflective, in contrast with other areas of high surface heat flux and elevated lower crustal conductivity. Taken together, the various data show that the Valhalla complex is likely cored by North American metasedimentary rocks and reveal features related to the Jurassic to Paleocene compressional fabric, which has been largely overprinted at the surface by subsequent Eocene extension.


2021 ◽  
Author(s):  
Anna Jegen ◽  
Anke Dannowski ◽  
Heidrun Kopp ◽  
Udo Barckhausen ◽  
Ingo Heyde ◽  
...  

<p>The Lau Basin is a young back-arc basin steadily forming at the Indo-Australian-Pacific plate boundary, where the Pacific plate is subducting underneath the Australian plate along the Tonga-Kermadec island arc. Roughly 25 Ma ago, roll-back of the Kermadec-Tonga subduction zone commenced, which lead to break up of the overriding plate and thus the formation of the western Lau Ridge and the eastern Tonga Ridge separated by the emerging Lau Basin.</p><p>As an analogue to the asymmetric roll back of the Pacific plate, the divergence rates decline southwards hence dictating an asymmetric, V-shaped basin opening. Further, the decentralisation of the extensional motion over 11 distinct spreading centres and zones of active rifting has led to the formation of a composite crust formed of a microplate mosaic. A simplified three plate model of the Lau Basin comprises the Tonga plate, the Australian plate and the Niuafo'ou microplate. The northeastern boundary of the Niuafo'ou microplate is given by two overlapping spreading centres (OLSC), the southern tip of the eastern axis of the Mangatolu Triple Junction (MTJ-S) and the northern tip of the Fonualei Rift spreading centre (FRSC) on the eastern side. Slow to ultraslow divergence rates were identified along the FRSC (8-32 mm/a) and slow divergence at the MTJ (27-32 mm/a), both decreasing southwards. However, the manner of divergence has not yet been identified. Additional regional geophysical data are necessary to overcome this gap of knowledge.</p><p>Research vessel RV Sonne (cruise SO267) set out to conduct seismic refraction and wide-angle reflection data along a 185 km long transect crossing the Lau Basin at ~16 °S from the Tonga arc in the east, the overlapping spreading centres, FRSC1 and MTJ-S2, and extending as far as a volcanic ridge in the west. The refraction seismic profile consisted of 30 ocean bottom seismometers. Additionally, 2D MCS reflection seismic data as well as magnetic and gravimetric data were acquired.</p><p>The results of our P-wave traveltime tomography show a crust that varies between 4.5-6 km in thickness. Underneath the OLSC the upper crust is 2-2.5 km thick and the lower crust 2-2.5 km thick. The velocity gradients of the upper and lower crust differ significantly from tomographic models of magmatically dominated oceanic ridges. Compared to such magmatically dominated ridges, our final P-wave velocity model displays a decreased velocity gradient in the upper crust and an increased velocity gradient in the lower crust more comparable to tectonically dominated rifts with a sparse magmatic budget.</p><p>The dominance of crustal stretching in the regional rifting process leads to a tectonical stretching, thus thinning of the crust under the OLSC and therefore increasing the lower crust’s velocity gradient. Due to the limited magmatic budget of the area, neither the magnetic anomaly nor the gravity data indicate a magmatically dominated spreading centre. We conclude that extension in the Lau Basin at the OLSC at 16 °S is dominated by extensional processes with little magmatism, which is supported by the distribution of seismic events concentrated at the northern tip of the FRSC.</p>


1983 ◽  
Vol 73 (6A) ◽  
pp. 1701-1720
Author(s):  
R. Feng ◽  
T. V. McEvilly

Abstract A seismic reflection profile crossing the San Andreas fault zone in central California was conducted in 1978. Results are complicated by the extreme lateral heterogeneity and low velocities in the fault zone. Other evidence for severe lateral velocity change across the fault zone lies in hypocenter bias and nodal plane distortion for earthquakes on the fault. Conventional interpretation and processing methods for reflection data are hard-pressed in this situation. Using the inverse ray method of May and Covey (1981), with an initial model derived from a variety of data and the impedance contrasts inferred from the preserved amplitude stacked section, an iterative inversion process yields a velocity model which, while clearly nonunique, is consistent with the various lines of evidence on the fault zone structure.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1395-1407 ◽  
Author(s):  
Frank Büker ◽  
Alan G. Green ◽  
Heinrich Horstmeyer

Shallow seismic reflection data were recorded along two long (>1.6 km) intersecting profiles in the glaciated Suhre Valley of northern Switzerland. Appropriate choice of source and receiver parameters resulted in a high‐fold (36–48) data set with common midpoints every 1.25 m. As for many shallow seismic reflection data sets, upper portions of the shot gathers were contaminated with high‐amplitude, source‐generated noise (e.g., direct, refracted, guided, surface, and airwaves). Spectral balancing was effective in significantly increasing the strength of the reflected signals relative to the source‐generated noise, and application of carefully selected top mutes ensured guided phases were not misprocessed and misinterpreted as reflections. Resultant processed sections were characterized by distributions of distinct seismic reflection patterns or facies that were bounded by quasi‐continuous reflection zones. The uppermost reflection zone at 20 to 50 ms (∼15 to ∼40 m depth) originated from a boundary between glaciolacustrine clays/silts and underlying glacial sands/gravels (till) deposits. Of particular importance was the discovery that the deepest part of the valley floor appeared on the seismic section at traveltimes >180 ms (∼200 m), approximately twice as deep as expected. Constrained by information from boreholes adjacent to the profiles, the various seismic units were interpreted in terms of unconsolidated glacial, glaciofluvial, and glaciolacustrine sediments deposited during two principal phases of glaciation (Riss at >100 000 and Würm at ∼18 000 years before present).


Sign in / Sign up

Export Citation Format

Share Document