The Relationship Between Tree-Growths And Stream-Runoff In The Truckee River Basin, California-Nevada

1936 ◽  
Vol 17 (2) ◽  
pp. 491 ◽  
Author(s):  
George Hardman
Author(s):  
O.I. Lukіanets ◽  
V.V Grebіn

In the article, in order to identify the generalized role of changes that occurred in the Psel River basin with such climatic indicators as air temperature, amount of precipitation, their form of precipitation, the structure of water bodies feeding, as well as water flow in the modern period, the average water balance for a long-term period was calculated the Psel river basin near the town of Gadyach. In general, the water balance equation shows the ratio of water input and consumption within a river basin, taking into account changes in its reserves over a selected time interval and allows one to assess the relationship of its individual components. In the article identifies changes in the ratio between the inflow (amount of precipitation) and consumption of water (total evaporation and runoff) for two periods – the climatic norm of 1961-1990 and modern 1990-2019. Analysis of the temporal dynamics of the water balance components of the Psel river basin showed that the values of the water balance components within the Psel river basin near the town of Gadyach in the modern period have decreased in comparison with the period of the climatic norm – the amount of precipitation by 6,2%, water flow by 17,5%, evapotranspiration by 1,8%. But, analyzing the relationship between the inflow and outflow of water in the basin for the two study periods 1961-1990 and 1990-2019, it can be stated that during the period of the climatic norm, the percentage of water flow from the total precipitation was greater (coefficient water flow 16.2%) than in the modern period (coefficient water flow 14.2%). With regard to total evaporation in water-balance ratios, its share in the water-balance ratio has increased over the modern period (1990-2019). If during the period of climatic normal (1961-1990) the aridity coefficient was 83.8%, then in the modern period, it is 85.8%. That is, the “redistribution” of the water volumes of atmospheric precipitation took place towards the total evaporation with a decrease in the volume of water used to form the water runoff. For the basin of the river Psel – the city of Gadyach in the modern period on the average ≈ 11 mm (or ≈ 130000000 m3) evaporate instead of replenishment of water resources. In the previous period of 1961-1990, on the contrary, ≈ 12 mm (or 136000000 m3) did not evaporate, but flowed into the water bodies of the basin.


2020 ◽  
Vol 12 (9) ◽  
pp. 3510 ◽  
Author(s):  
Dechao Chen ◽  
Acef Elhadj ◽  
Hualian Xu ◽  
Xinliang Xu ◽  
Zhi Qiao

Many catchments in northern Algeria, including the coastal Mitidja Basin in the north central part of the country have been negatively affected by the deterioration of water quality in recent years. This study aims to discover the relationship between land use change and its impact on water quality in the coastal Mitidja river basin. Based on the data of land use and water quality in 2000, 2010 and 2017, the relationship between land use change and surface water quality index in the Mitidja Watershed was discussed through GIS and statistical analysis. The results show that the physical and chemical properties of the Mitidja river basin have obvious spatial heterogeneity. The water quality of upstream was better than that of downstream. There was a significant spatial relationship between the eight water quality indicators and three land use types, including urban residential land, agricultural land and vegetation. In most cases, settlements and agricultural land are the dominant factors leading to river pollution, and higher vegetation coverage helps to improve water quality. The regression model revealed that percentage of urban settlement area was a predictor for NH4-N, BOD5, COD, SS, PO4-P, DO and pH, while vegetation was a predictor for NO3-N. The analysis also showed that during this period, urban settlement areas increased sharply, which has a significant impact on water quality variables. Agricultural land only had a significant positive correlation with PO4-P. The results provide an effective way to evaluate river water quality, control water pollution and land use management by landscape pattern.


2019 ◽  
Vol 11 (13) ◽  
pp. 1628 ◽  
Author(s):  
Jing Zhao ◽  
Shengzhi Huang ◽  
Qiang Huang ◽  
Hao Wang ◽  
Guoyong Leng ◽  
...  

Understanding the changing relationships between vegetation coverage and precipitation/temperature (P/T) and then exploring their potential drivers are highly necessary for ecosystem management under the backdrop of a changing environment. The Jing River Basin (JRB), a typical eco-environmentally vulnerable region of the Loess Plateau, was chosen to identify abrupt variations of the relationships between seasonal Normalized Difference Vegetation Index (NDVI) and P/T through a copula-based method. By considering the climatic/large-scale atmospheric circulation patterns and human activities, the potential causes of the non-stationarity of the relationship between NDVI and P/T were revealed. Results indicated that (1) the copula-based framework introduced in this study is more reasonable and reliable than the traditional double-mass curves method in detecting change points of vegetation and climate relationships; (2) generally, no significant change points were identified during 1982–2010 at the 95% confidence level, implying the overall stationary relationship still exists, while the relationships between spring NDVI and P/T, autumn NDVI and P have slightly changed; (3) teleconnection factors (including Arctic Oscillation (AO), Pacific Decadal Oscillation (PDO), Niño 3.4, and sunspots) have a more significant influence on the relationship between seasonal NDVI and P/T than local climatic factors (including potential evapotranspiration and soil moisture); (4) negative human activities (expansion of farmland and urban areas) and positive human activities (“Grain For Green” program) were also potential factors affecting the relationship between NDVI and P/T. This study provides a new and reliable insight into detecting the non-stationarity of the relationship between NDVI and P/T, which will be beneficial for further revealing the connection between the atmosphere and ecosystems.


2017 ◽  
Vol 4 (11) ◽  
pp. 171253 ◽  
Author(s):  
Mary M. Peacock ◽  
Evon R. Hekkala ◽  
Veronica S. Kirchoff ◽  
Lisa G. Heki

Currently one small, native population of the culturally and ecologically important Lahontan cutthroat trout ( Oncorhynchus clarkii henshawi , LCT, Federally listed) remains in the Truckee River watershed of northwestern Nevada and northeastern California. The majority of populations in this watershed were extirpated in the 1940s due to invasive species, overharvest, anthropogenic water consumption and changing precipitation regimes. In 1977, a population of cutthroat trout discovered in the Pilot Peak Mountains in the Bonneville basin of Utah, was putatively identified as the extirpated LCT lacustrine lineage native to Pyramid Lake in the Truckee River basin based on morphological and meristic characters. Our phylogenetic and Bayesian genotype clustering analyses of museum specimens collected from the large lakes (1872–1913) and contemporary samples collected from populations throughout the extant range provide evidence in support of a genetically distinct Truckee River basin origin for this population. Analysis of museum samples alone identified three distinct genotype clusters and historical connectivity among water bodies within the Truckee River basin. Baseline data from museum collections indicate that the extant Pilot Peak strain represents a remnant of the extirpated lacustrine lineage. Given the limitations on high-quality data when working with a sparse number of preserved museum samples, we acknowledge that, in the end, this may be a more complicated story. However, the paucity of remnant populations in the Truckee River watershed, in combination with data on the distribution of morphological, meristic and genetic data for Lahontan cutthroat trout, suggests that recovery strategies, particularly in the large lacustrine habitats should consider this lineage as an important part of the genetic legacy of this species.


2005 ◽  
Vol 51 ◽  
pp. 187-191
Author(s):  
Muhammad Barzani Gasim ◽  
◽  
Abd. Rahim Samsudin ◽  
Wan Nor Azmin Sulaiman ◽  
Mohd. Ismail Yaziz ◽  
...  
Keyword(s):  

2016 ◽  
Vol 9 (6) ◽  
pp. 2075
Author(s):  
Vitor Vieira Vasconcelos ◽  
Omar Pereira Campos ◽  
Paulo Pereira Martins Junior

Apresenta-se uma avaliação da maturidade do perfil geomorfológico da Bacia do Rio Parcatu, afluente do Rio São Francisco. As relações entre comprimento e queda média dos seguimentos de rios para cada ordem pelo método de Strahler são analizados por leis empíricas para comparação com um perfil teórico de máximo equilíbrio. Os resultados demonstram que a Bacia do Rio Paracatu está próxima de seu estágio máximo de maturidade, embora ainda não o tenha alcançado completamente. A partir do estudo aplicado, são tecidas reflexões sobre as possibilidades de investigação de bacias hidrográficas com base em abordagens de entropia, meta-estabilidade, geovulnerabilidade e evolução geomorfológica.   A B S T R A C T An assessment of the maturity of the geomorphological profile of the Paracatu River Basin, a tributary of the São Francisco River, is presented. The relationship between length and average stream fall for each order using the Strahler method is analysed using empirical laws for a comparison to a theoretical profile of maximum equilibrium. The results show that the Paracatu River Basin is close to its maximum stage of maturity, though it has not achieved it completely. Based on this study, reflections are made about the possibilities to study this watershed based on entropy approaches, metastability, geological vulnerability and geomorphological evolution. Keywords: Equilibrium profile, entropy, metastability, geovulnerability, geomorphological evolution, Paracatu.   


Sign in / Sign up

Export Citation Format

Share Document