Physiological responses of Prunus cerasus to whole-plant source manipulation. Leaf gas exchange, chlorophyll fluorescence, water relations and carbohydrate concentrations

1993 ◽  
Vol 88 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Desmond R. Layne ◽  
James A. Flore
2004 ◽  
Vol 258 (1) ◽  
pp. 249-260 ◽  
Author(s):  
Orlando Guenni ◽  
Zdravko Baruch ◽  
Douglas Marín

2018 ◽  
Vol 70 (3) ◽  
pp. 413-423 ◽  
Author(s):  
Mohamed Farissi ◽  
Mohammed Mouradi ◽  
Omar Farssi ◽  
Abdelaziz Bouizgaren ◽  
Cherki Ghoulam

Salinity is one of the most serious agricultural problems that adversely affects growth and productivity of pasture crops such as alfalfa. In this study, the effects of salinity on some ecophysiological and biochemical criteria associated with salt tolerance were assessed in two Moroccan alfalfa (Medicago sativa L.) populations, Taf 1 and Tata. The experiment was conducted in a hydro-aeroponic system containing nutrient solutions, with the addition of NaCl at concentrations of 100 and 200 mM. The salt stress was applied for a month. Several traits in relation to salt tolerance, such as plant dry biomass, relative water content, leaf gas exchange, chlorophyll fluorescence, nutrient uptake, lipid peroxidation and antioxidant enzymes, were analyzed at the end of the experiment. The membrane potential was measured in root cortex cells of plants grown with or without NaCl treatment during a week. The results indicated that under salt stress, plant growth and all of the studied physiological and biochemical traits were significantly decreased, except for malondialdehyde and H2O2 contents, which were found to be increased under salt stress. Depolarization of membrane root cortex cells with the increase in external NaCl concentration was noted, irrespective of the growth conditions. The Tata population was more tolerant to high salinity (200 mM NaCl) and its tolerance was associated with the ability of plants to maintain adequate levels of the studied parameters and their ability to overcome oxidative stress by the induction of antioxidant enzymes, such as guaiacol peroxidase, catalase and superoxide dismutase.


2008 ◽  
Vol 52 (2) ◽  
pp. 385-390 ◽  
Author(s):  
J. C. Melgar ◽  
J. P. Syvertsen ◽  
V. Martinez ◽  
F. Garcia-Sanchez

Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 859 ◽  
Author(s):  
Aziz Khan ◽  
Jie Zheng ◽  
Daniel Kean Yuen Tan ◽  
Ahmad Khan ◽  
Kashif Akhtar ◽  
...  

Manipulation of planting density and choice of variety are effective management components in any cropping system that aims to enhance the balance between environmental resource availability and crop requirements. One-time fertilization at first flower with a medium plant stand under late sowing has not yet been attempted. To fill this knowledge gap, changes in leaf structural (stomatal density, stomatal length, stomata width, stomatal pore perimeter, and leaf thickness), leaf gas exchange, and chlorophyll fluorescence attributes of different cotton varieties were made in order to change the planting densities to improve lint yield under a new planting model. A two-year field evaluation was carried out on cotton varieties—V1 (Zhongmian-16) and V2 (J-4B)—to examine the effect of changing the planting density (D1, low, 3 × 104; D2, moderate, 6 × 104; and D3, dense, 9 × 104) on cotton lint yield, leaf structure, chlorophyll fluorescence, and leaf gas exchange attribute responses. Across these varieties, J-4B had higher lint yield compared with Zhongmian-16 in both years. Plants at high density had depressed leaf structural traits, net photosynthetic rate, stomatal conductance, intercellular CO2 uptake, quenching (qP), actual quantum yield of photosystem II (ΦPSII), and maximum quantum yield of PSII (Fv/Fm) in both years. Crops at moderate density had improved leaf gas exchange traits, stomatal density, number of stomata, pore perimeter, length, and width, as well as increased qP, ΦPSII, and Fv/Fm compared with low- and high-density plants. Improvement in leaf structural and functional traits contributed to 15.9%–10.7% and 12.3%–10.5% more boll m−2, with 20.6%–13.4% and 28.9%–24.1% higher lint yield averaged across both years, respectively, under moderate planting density compared with low and high density. In conclusion, the data underscore the importance of proper agronomic methods for cotton production, and that J-4B and Zhongmian-16 varieties, grown under moderate and lower densities, could be a promising option based on improved lint yield in subtropical regions.


2001 ◽  
Vol 58 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Bouchra El Omari ◽  
Isabel Fleck ◽  
Xavier Aranda ◽  
Asumpci� Moret ◽  
Mart� Nadal

2019 ◽  
Vol 39 (8) ◽  
pp. 1285-1299 ◽  
Author(s):  
Nadine K Ruehr ◽  
Rüdiger Grote ◽  
Stefan Mayr ◽  
Almut Arneth

Abstract Plant responses to drought and heat stress have been extensively studied, whereas post-stress recovery, which is fundamental to understanding stress resilience, has received much less attention. Here, we present a conceptual stress-recovery framework with respect to hydraulic and metabolic functioning in woody plants. We further synthesize results from controlled experimental studies following heat or drought events and highlight underlying mechanisms that drive post-stress recovery. We find that the pace of recovery differs among physiological processes. Leaf water potential and abscisic acid concentration typically recover within few days upon rewetting, while leaf gas exchange-related variables lag behind. Under increased drought severity as indicated by a loss in xylem hydraulic conductance, the time for stomatal conductance recovery increases markedly. Following heat stress release, a similar delay in leaf gas exchange recovery has been observed, but the reasons are most likely a slow reversal of photosynthetic impairment and other temperature-related leaf damages, which typically manifest at temperatures above 40 °C. Based thereon, we suggest that recovery of gas exchange is fast following mild stress, while recovery is slow and reliant on the efficiency of repair and regrowth when stress results in functional impairment and damage to critical plant processes. We further propose that increasing stress severity, particular after critical stress levels have been reached, increases the carbon cost involved in reestablishing functionality. This concept can guide future experimental research and provides a base for modeling post-stress recovery of carbon and water relations in trees.


Sign in / Sign up

Export Citation Format

Share Document