lint yield
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 37)

H-INDEX

30
(FIVE YEARS 4)

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1294
Author(s):  
Guoping Wang ◽  
Lu Feng ◽  
Liantao Liu ◽  
Yongjiang Zhang ◽  
Anchang Li ◽  
...  

Wheat-cotton double cropping has improved crop productivity and economic benefits per unit land area in many countries, including China. However, relay intercropping of full-season cotton and wheat, the most commonly adopted mode, is labor-intensive and unconducive to mechanization. The direct sowing of short-season cotton after wheat (CAW) has been successful, but cotton yields and economic benefits are greatly reduced. Whether the relay intercropping of short-season cotton before the wheat harvest increases cotton yields remains unclear, as does the earliness and fiber quality relative to those for CAW. Therefore, we directly planted short-season cotton after wheat harvest on 15 June (CAW) as the control and interplanted short-season cotton in wheat on 15 May (S1), 25 May (S2) and 5 June (S3), which were 30, 20 and 10 days prior to wheat harvest, respectively, from 2016 to 2018. The crop growth, yield, yield components, boll distribution, and earliness of the cotton were evaluated. The yields and earliness of short-season cotton under relay intercropping were 26.7–30.6% and 20.4–42.9% higher than those under CAW, respectively. Compared with CAW, relay intercropping treatments increased the boll density, boll weight and lint percentage by 5.6–13.1%, 12.5–24.5% and 5.8–12.7%, respectively. The dry matter accumulation and harvest index under the relay intercropping treatments were also greater than those under CAW, which might be attributed to the greater partitioning of dry matter to the seed cotton than to the boll shells. Among the relay intercropping treatments (S1, S2 and S3), the lint yield did not differ, but S1 and S2 were considerably better than S3 based on earliness and fiber quality. The analysis of the within-plant spatial boll distribution showed that more bolls were formed on the lower to middle fruiting branches and at the first fruiting sites for S1 and S2 than for S3 and CAW. Therefore, the increased earliness and fiber quality induced through early relay intercropping (S1 and S2) could be attributed to an improved spatial boll distribution compared to late relay intercropping (S3) or CAW. Conclusively, compared to late relay intercropping and CAW, early relay intercropping considerably increased the lint yield, fiber quality, and earliness by improving the yield components, boll distribution, and dry matter accumulation and partitioning. The relay intercropping of short-season cotton 20 to 30 days before wheat harvest represents a promising alternative to CAW in wheat-cotton double-cropping systems in the Yellow River Basin of China and other regions with similar conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pawan Kumar ◽  
Somveer Nimbal ◽  
Rajvir Singh Sangwan ◽  
Neeraj Budhlakoti ◽  
Varsha Singh ◽  
...  

Improving the yield of lint is the main objective for most of the cotton crop improvement programs throughout the world as it meets the demand of fiber for textile industries. In the current study, 96 genotypes of Gossypium hirsutum were used to find novel simple sequence repeat marker-based associations for lint yield contributing traits by linkage disequilibrium. Extensive phenotyping of 96 genotypes for various agronomic traits was done for two consecutive years (2018 and 2019) in early, normal, and late sown environments. Out of 168 SSR markers screened over the 96 genotypes, a total of 97 polymorphic markers containing 293 alleles were used for analysis. Three different models, i.e., mixed linear model (MLM), compressed mixed linear model (CMLM), and multiple locus mixed linear model (MLMM), were used to detect the significant marker–trait associations for six different environments separately. A total of 38 significant marker–trait associations that were common to at least two environments were considered as promising associations and detailed annotation of the significant markers has been carried out. Twenty-two marker–trait associations were found to be novel in the current study. These results will be very useful for crop improvement programs using marker-assisted cotton breeding.


2021 ◽  
Vol 15 (2) ◽  
pp. 359-365
Author(s):  
Hui Fang ◽  
Kuang Zhang ◽  
Daryl T. Bowman ◽  
Don C. Jones ◽  
Vasu Kuraparthy

Crop Science ◽  
2021 ◽  
Author(s):  
Manuel Alejandro Guzman Hernandez ◽  
Luis Alexander Vilain ◽  
Tatiana Rondon ◽  
Juan Sanchez

2021 ◽  
Vol 21 (No.1) ◽  
Author(s):  
Max Mariz ◽  
Reham Gibely ◽  
Abdelmoghny AM

The aim of this study was to investigate the relationship between specific combining ability, genetic diversity of parents and heterosis over better parent effects. This research, having eighteen F1 crosses derived from crossing between six lines and three testers, was conducted in order to estimate combining ability, to determine the nature of gene action and heterosis for yield and fiber quality traits and to detect the appropriate crosses for cotton breeding program. The experiment was conducted on randomized complete block design with three replications. The analyses of variance showed significant differences among the genotypes, parents (lines and testers) and crosses for all the studied traits. Estimates of both general and specific combining ability effects were significant for most traits, indicating the importance of both additive and non-additive gene effects for these traits. While, specific was higher than general combining ability variances, for all traits, showing non-additive gene action controlling and therefore, heterosis breeding may be rewarding. The heterosis value varied from cross to cross and from trait to trait. This dissimilarity coefficient was ranged from 3.234 between Giza 85 and Giza 80 to 71.002 between Giza 96 and 10229. Association between heterosis over better parent and specific combining ability was positive and significant for all the studied traits except lint yield / plant. No correlations were found between SCA and GD for all the studied traits. Similarly, heterosis effects was negatively significantly correlated with GD only in the case of boll weight, lint yield / plant and uniformity ratio %, while showed positive and significant correlation for fiber strength and micronaire value. Four crosses showed both positive and significant heterosis and specific combining ability for most yield traits. The parents of these crosses belong to different clusters. Crossing diverse parents could produce high heterotic performance in hybri


2021 ◽  
Vol 261 ◽  
pp. 107989
Author(s):  
Yanjun Zhang ◽  
Yongjiang Zhang ◽  
Guangya Liu ◽  
Shizhen Xu ◽  
Jianlong Dai ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 231
Author(s):  
Hanan H. Shukr ◽  
Keith G. Pembleton ◽  
Andrew F. Zull ◽  
Geoff J. Cockfield

Irrigated cotton (Gossypium hirsutum L.) growers in the Murray-Darling Basin (MDB) of Australia, are challenged by limited water availability. This modelling-study aimed to determine if deficit irrigation (DI) practices can potentially improve water use efficiency (WUE) for furrow irrigation (FI), overhead sprinkler irrigation (OSI) and subsurface drip irrigation (SDI) systems. We validated the Agricultural Production System sIMulator (APSIM) against observed cotton lint yield and crop biomass accumulation for different management practices. The model achieved concordance correlation coefficients of 0.93 and 0.82 against observed cotton crop biomass accumulation and lint yields, respectively. The model was then applied to evaluate the impacts of different levels of DI on lint yield, WUE across cotton growing locations in the MDB (Goondiwindi, Moree, Narrabri, and Warren), during the period from 1977 to 2017. The different levels of DI for the FI system were no irrigation, full irrigation (TF) and irrigated one out of four, one out of three, one out of two, two out of three and two out of four TF events. For the OSI and SDI systems, DI levels were no irrigation, TF, 20% of TF, 40% of TF, 60% of TF and 80% of TF. Lint yield was maximised under the OSI and SDI systems for most locations by applying 80% of TF. However; modelling identified that WUE was maximised at 60% of full irrigation for OSI and SDI systems. These results suggest there are significant gains in agronomic performance to be gained through the application of DI practices with these systems. For FI, DI had no benefit in terms of increasing yield, while DI showed marginal gains in terms of WUE in some situations. This result is due to the greater exposure to periodic water deficit stress that occurred when DI practices were applied by an FI system. The results suggest that in the northern MDB, water savings could be realised for cotton production under both OSI and SDI systems if DI were adopted to a limited extent, depending on location and irrigation system.


Sign in / Sign up

Export Citation Format

Share Document