Dynamics of an immune response in house sparrows Passer domesticus in relation to time of day, body condition and blood parasite infection

Oikos ◽  
2003 ◽  
Vol 101 (2) ◽  
pp. 291-298 ◽  
Author(s):  
C. Navarro ◽  
A. Marzal ◽  
F. de Lope ◽  
A. P. Moller
Parasitology ◽  
2017 ◽  
Vol 144 (11) ◽  
pp. 1449-1457 ◽  
Author(s):  
ALFONSO MARZAL ◽  
ALEJANDRO IBÁÑEZ ◽  
MANUEL GONZÁLEZ-BLÁZQUEZ ◽  
PILAR LÓPEZ ◽  
JOSÉ MARTÍN

SUMMARYBlood parasites such as haemogregarines and haemosporidians have been identified in almost all groups of vertebrates and may cause serious damages to their hosts. However, very little is known about biodiversity of these parasites and their effects on some groups of reptiles such as terrapins. Moreover, the information on virulence from blood parasites mixed infection is largely unknown in reptiles. With this aim, we investigated for the first time the prevalence and genetic diversity of blood parasites from one genus of haemoparasitic aplicomplexan (Hepatozoon) in two populations of Spanish terrapins (Mauremys leprosa), a semi-aquatic turtle from southwestern Europe with a vulnerable conservation status. We also examined the association between mixed blood parasite infection and indicators of health of terrapins (body condition, haematocrit values and immune response). Blood parasite infection with Hepatozoon spp was detected in 46·4% of 140 examined terrapins. The prevalence of blood parasites infection differed between populations. We found two different lineages of blood parasite, which have not been found in previous studies. Of the turtles with infection, 5·7% harboured mixed infection by the two lineages. There was no difference in body condition between uninfected, single-infected and mixed-infected turtles, but mixed-infected individuals had the lowest values of haematocrit, thus revealing the negative effects of blood parasite mixed infections. Immune response varied among terrapins with different infection status, where mixed infected individuals had higher immune response than uninfected or single-infected terrapins.


2016 ◽  
Author(s):  
Gregorio Moreno-Rueda

Birds frequently signal different qualities by plumage colouration, mainly during mating. However, plumage colouration is determined during the moult, and therefore it would indicate the quality of individual birds during the moult, not its current quality. Recent studies, however, suggest that birds could modify plumage colouration by using cosmetic preen oil. In this study, I show that bib colouration is related to uropygial gland size and body condition in male house sparrows (Passer domesticus). Moreover, I conducted an experiment in which a group of sparrows were inoculated with an antigen, mimicking an illness. In control birds, short-term changes in bib colouration were related to both body condition and change in uropygial gland size. Therefore, birds that spent more preen oil (thus, reducing uropygial gland size), showed a greater colouration change. However, bib colouration did not change with use of preen oil in experimental birds inoculated with the antigen. That is, the simulated illness cancelled the effect of preen oil on bib colouration. Given that the experiment did not affect preen oil production, this finding suggests that the immune challenge provoked a change in the composition of preen oil, affecting its cosmetic properties. In short, the results of this study suggest that (1) male house sparrows produce cosmetic preen oil that alters the colouration of their bibs; (2) the more effort in preening, the more change in bib colouration; and (3) in this way, bib colouration has the potential to signal current health status, since less healthy birds showed less capacity to change bib colouration.


2008 ◽  
Vol 86 (8) ◽  
pp. 834-842 ◽  
Author(s):  
Péter László Pap ◽  
Csongor István Vágási ◽  
Gábor Árpád Czirják ◽  
Zoltán Barta

We investigated the effects of nutritional limitation, humoral immune activation, and their interaction on postnuptial molting of aviary-kept house sparrows ( Passer domesticus (L., 1758)). In a 2 × 2 experimental design, we measured the progress of molting and the quality of feathers produced during molting by house sparrows exposed to different diet qualities (high and low) and humoral immune activation with sheep red blood cells (SRBC). Food quality, but not the activation of humoral immunity, affected significantly the body mass and the process of molting. Sparrows feeding on low-quality food had decreased body mass and longer molts than the high-quality group. Low-quality food, but not the activation of humoral immunity, reduced significantly the length and mass (i.e., the quality) of primaries grown during molting. Birds responded significantly to injection with SRBC compared with the control group, but the immune response was similar between nutritional groups. The absence of a negative effect of humoral immunity on molting in house sparrows might be related to the low energy and nutritional requirements of mounting and maintaining a humoral immune response.


2014 ◽  
Vol 60 (4) ◽  
pp. 449-459 ◽  
Author(s):  
Charlène Leloutre ◽  
Alice Gouzerh ◽  
Frédéric Angelier

Abstract Contrary to the nestling phase, the post-fledging phase has been less studied probably because it is challenging to follow the chicks after they fledge. However, this phase is crucial to consider when focusing on the life cycle of individuals because it is associated with new demands: After leaving the nest, individuals have to find their own food and cope with a new set of previously unknown stressors. In this study, we aimed at better understanding how energetically demanding the post-fledging period is in house sparrows Passer domesticus by measuring several indices of a fledgling’s state (body condition, fat and muscle scores and plumage quality). If the energetic demands of the post-fledging period are greater than those of the adult life, we predicted that fledglings should be in lower condition and should have a plumage of lower quality relative to adults. Supporting this prediction, the condition and the plumage of fledglings differed dramatically from those of adults. Interestingly, this difference disappeared in autumn. Overall, our results suggest that the post-fledging period is probably one of the most energetically demanding of the life cycle in this species. Supporting this idea, the resighting probability of fledglings was lower relative to adults. However, resighting probability depends on many factors (mortality, dispersal, habitat use and behaviours) and future studies are necessary to tease apart their relative importance in determining resighting probability [Current Zoology 60 (4): 449–459, 2014].


Behaviour ◽  
1980 ◽  
Vol 74 (1-2) ◽  
pp. 114-127 ◽  
Author(s):  
C.J. Barnard

Abstract1. In a field experiment with a winter population of house sparrows at a farm, flock size at a given feeding site appeared to be positively related to seed density. 2. The positive relationship between flock size and seed density resulted from individual birds spending longer in areas where seed density was high and from birds being recruited from elsewhere on the farm to experimental sites. 3. Mean flock size was positively related to and the variance of flock size negatively related to the time of day and both showed a tendency to be negatively correlated with the amount of human disturbance. Mean flock size was also positively related to ambient temperature and flock size variance negatively related to daylength. 4. The rate of fighting per bird increased with flock size and time of day but decreased with increasing ambient temperature. 5. The pattern of flock size distribution in house sparrows is compared to that in juncos and some differences between the two may be attributable to differences in the type of food supply and temperature range over winter.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2102 ◽  
Author(s):  
Gregorio Moreno-Rueda

Birds frequently signal different qualities by plumage colouration, mainly during mating. However, plumage colouration is determined during the moult, and therefore it would indicate the quality of individual birds during the moult, not its current quality. Recent studies, however, suggest that birds could modify plumage colouration by using cosmetic preen oil produced by the uropygial gland. In this study, I show that bib colouration is related to uropygial gland size and body condition in male house sparrows (Passer domesticus). Moreover, I conducted an experiment in which a group of sparrows were inoculated with an antigen, mimicking an illness. In control birds, short-term changes in bib colouration were related to both body condition and change in uropygial gland size. Therefore, birds that reduced uropygial gland size showed a greater colouration change. However, bib colouration did not change with the change in uropygial gland size in experimental birds inoculated with the antigen. Given that the experiment did not affect preen oil production or consumption, this finding tentatively suggests that the immune challenge provoked a change in the composition of preen oil, affecting its cosmetic properties. In short, the results of this study suggest that (1) male house sparrows produce cosmetic preen oil that alters the colouration of their bibs; (2) the more change in uropygial gland size, the more change in bib colouration; and (3) in this way, bib colouration has the potential to signal current health status, since less healthy birds showed less capacity to change bib colouration.


2016 ◽  
Author(s):  
Gregorio Moreno-Rueda

Birds frequently signal different qualities by plumage colouration, mainly during mating. However, plumage colouration is determined during the moult, and therefore it would indicate the quality of individual birds during the moult, not its current quality. Recent studies, however, suggest that birds could modify plumage colouration by using cosmetic preen oil. In this study, I show that bib colouration is related to uropygial gland size and body condition in male house sparrows (Passer domesticus). Moreover, I conducted an experiment in which a group of sparrows were inoculated with an antigen, mimicking an illness. In control birds, short-term changes in bib colouration were related to both body condition and change in uropygial gland size. Therefore, birds that spent more preen oil (thus, reducing uropygial gland size), showed a greater colouration change. However, bib colouration did not change with use of preen oil in experimental birds inoculated with the antigen. That is, the simulated illness cancelled the effect of preen oil on bib colouration. Given that the experiment did not affect preen oil production, this finding suggests that the immune challenge provoked a change in the composition of preen oil, affecting its cosmetic properties. In short, the results of this study suggest that (1) male house sparrows produce cosmetic preen oil that alters the colouration of their bibs; (2) the more effort in preening, the more change in bib colouration; and (3) in this way, bib colouration has the potential to signal current health status, since less healthy birds showed less capacity to change bib colouration.


Sign in / Sign up

Export Citation Format

Share Document