Laser-solid interactions

AccessScience ◽  
2015 ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 1253
Author(s):  
Evaggelos Kaselouris ◽  
Kyriaki Kosma ◽  
Yannis Orphanos ◽  
Alexandros Skoulakis ◽  
Ioannis Fitilis ◽  
...  

A three-dimensional, thermal-structural finite element model, originally developed for the study of laser–solid interactions and the generation and propagation of surface acoustic waves in the macroscopic level, was downscaled for the investigation of the surface roughness influence on pulsed laser–solid interactions. The dimensions of the computational domain were reduced to include the laser-heated area of interest. The initially flat surface was progressively downscaled to model the spatial roughness profile characteristics with increasing geometrical accuracy. Since we focused on the plastic and melting regimes, where structural changes occur in the submicrometer scale, the proposed downscaling approach allowed for their accurate positioning. Additionally, the multiscale simulation results were discussed in relation to experimental findings based on white light interferometry. The combination of this multiscale modeling approach with the experimental methodology presented in this study provides a multilevel scientific tool for an in-depth analysis of the influence of heat parameters on the surface roughness of solid materials and can be further extended to various laser–solid interaction applications.


2000 ◽  
Vol 84 (5) ◽  
pp. 903-906 ◽  
Author(s):  
T. E. Cowan ◽  
A. W. Hunt ◽  
T. W. Phillips ◽  
S. C. Wilks ◽  
M. D. Perry ◽  
...  

2021 ◽  
Vol 51 (9) ◽  
pp. 833-837
Author(s):  
X Shen ◽  
Alexander M Pukhov ◽  
S E Perevalov ◽  
A A Solov'ev

2019 ◽  
Vol 61 (3) ◽  
pp. 034001 ◽  
Author(s):  
C D Armstrong ◽  
C M Brenner ◽  
E Zemaityte ◽  
G G Scott ◽  
D R Rusby ◽  
...  

2018 ◽  
Vol 167 ◽  
pp. 02001 ◽  
Author(s):  
Dean Rusby ◽  
Ross Gray ◽  
Nick Butler ◽  
Rachel Dance ◽  
Graeme Scott ◽  
...  

The interaction of a high-intensity laser with a solid target produces an energetic distribution of electrons that pass into the target. These electrons reach the rear surface of the target creating strong electric potentials that act to restrict the further escape of additional electrons. The measurement of the angle, flux and spectra of the electrons that do escape gives insights to the initial interaction. Here, the escaping electrons have been measured using a differentially filtered image plate stack, from interactions with intensities from mid 1020-1017 W/cm2, where the intensity has been reduced by defocussing to increase the size of the focal spot. An increase in electron flux is initially observed as the intensity is reduced from 4x1020 to 6x1018 W/cm2. The temperature of the electron distribution is also measured and found to be relatively constant. 2D particle-in-cell modelling is used to demonstrate the importance of pre-plasma conditions in understanding these observations.


2013 ◽  
Vol 15 (12) ◽  
pp. 123038 ◽  
Author(s):  
C Zulick ◽  
B Hou ◽  
F Dollar ◽  
A Maksimchuk ◽  
J Nees ◽  
...  

2004 ◽  
Vol 69 (4) ◽  
Author(s):  
Jun Zhang ◽  
J. Zhang ◽  
Z. M. Sheng ◽  
Y. T. Li ◽  
Y. Qiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document