Children’s perceptual sensitivity to optic flow-like visual motion differs from adults.

2021 ◽  
Vol 57 (11) ◽  
pp. 1810-1821
Author(s):  
Yiming Qian ◽  
Andrea R. Seisler ◽  
Rick O. Gilmore
2020 ◽  
Author(s):  
Nardin Nakhla ◽  
Yavar Korkian ◽  
Matthew R. Krause ◽  
Christopher C. Pack

AbstractThe processing of visual motion is carried out by dedicated pathways in the primate brain. These pathways originate with populations of direction-selective neurons in the primary visual cortex, which project to dorsal structures like the middle temporal (MT) and medial superior temporal (MST) areas. Anatomical and imaging studies have suggested that area V3A might also be specialized for motion processing, but there have been very few studies of single-neuron direction selectivity in this area. We have therefore performed electrophysiological recordings from V3A neurons in two macaque monkeys (one male and one female) and measured responses to a large battery of motion stimuli that includes translation motion, as well as more complex optic flow patterns. For comparison, we simultaneously recorded the responses of MT neurons to the same stimuli. Surprisingly, we find that overall levels of direction selectivity are similar in V3A and MT and moreover that the population of V3A neurons exhibits somewhat greater selectivity for optic flow patterns. These results suggest that V3A should be considered as part of the motion processing machinery of the visual cortex, in both human and non-human primates.Significance statementAlthough area V3A is frequently the target of anatomy and imaging studies, little is known about its functional role in processing visual stimuli. Its contribution to motion processing has been particularly unclear, with different studies yielding different conclusions. We report a detailed study of direction selectivity in V3A. Our results show that single V3A neurons are, on average, as capable of representing motion direction as are neurons in well-known structures like MT. Moreover, we identify a possible specialization for V3A neurons in representing complex optic flow, which has previously been thought to emerge in higher-order brain regions. Thus it appears that V3A is well-suited to a functional role in motion processing.


i-Perception ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 204166952110557
Author(s):  
Diederick C. Niehorster

The concept of optic flow, a global pattern of visual motion that is both caused by and signals self-motion, is canonically ascribed to James Gibson's 1950 book “ The Perception of the Visual World.” There have, however, been several other developments of this concept, chiefly by Gwilym Grindley and Edward Calvert. Based on rarely referenced scientific literature and archival research, this article describes the development of the concept of optic flow by the aforementioned authors and several others. The article furthermore presents the available evidence for interactions between these authors, focusing on whether parts of Gibson's proposal were derived from the work of Grindley or Calvert. While Grindley's work may have made Gibson aware of the geometrical facts of optic flow, Gibson's work is not derivative of Grindley's. It is furthermore shown that Gibson only learned of Calvert's work in 1956, almost a decade after Gibson first published his proposal. In conclusion, the development of the concept of optic flow presents an intriguing example of convergent thought in the progress of science.


2014 ◽  
Vol 111 (1) ◽  
pp. 62-71 ◽  
Author(s):  
Peter T. Weir ◽  
Bettina Schnell ◽  
Michael H. Dickinson

Sensory systems provide abundant information about the environment surrounding an animal, but only a small fraction of that information is relevant for any given task. One example of this requirement for context-dependent filtering of a sensory stream is the role that optic flow plays in guiding locomotion. Flying animals, which do not have access to a direct measure of ground speed, rely on optic flow to regulate their forward velocity. This observation suggests that progressive optic flow, the pattern of front-to-back motion on the retina created by forward motion, should be especially salient to an animal while it is in flight, but less important while it is standing still. We recorded the activity of cells in the central complex of Drosophila melanogaster during quiescence and tethered flight using both calcium imaging and whole cell patch-clamp techniques. We observed a genetically identified set of neurons in the fan-shaped body that are unresponsive to visual motion while the animal is quiescent. During flight their baseline activity increases, and they respond to front-to-back motion with changes relative to this baseline. The results provide an example of how nervous systems selectively respond to complex sensory stimuli depending on the current behavioral state of the animal.


2014 ◽  
Vol 18 (3) ◽  
pp. 436-451 ◽  
Author(s):  
Seth B. Agyei ◽  
Magnus Holth ◽  
F.R. Ruud van der Weel ◽  
Audrey L.H. van der Meer

1993 ◽  
Vol 5 (3) ◽  
pp. 374-391 ◽  
Author(s):  
Markus Lappe ◽  
Josef P. Rauschecker

Interest in the processing of optic flow has increased recently in both the neurophysiological and the psychophysical communities. We have designed a neural network model of the visual motion pathway in higher mammals that detects the direction of heading from optic flow. The model is a neural implementation of the subspace algorithm introduced by Heeger and Jepson (1990). We have tested the network in simulations that are closely related to psychophysical and neurophysiological experiments and show that our results are consistent with recent data from both fields. The network reproduces some key properties of human ego-motion perception. At the same time, it produces neurons that are selective for different components of ego-motion flow fields, such as expansions and rotations. These properties are reminiscent of a subclass of neurons in cortical area MSTd, the triple-component neurons. We propose that the output of such neurons could be used to generate a computational map of heading directions in or beyond MST.


Perception ◽  
1997 ◽  
Vol 26 (7) ◽  
pp. 823-830 ◽  
Author(s):  
Lothar Spillmann ◽  
Stuart Anstis ◽  
Anne Kurtenbach ◽  
Ian Howard

A random-dot field undergoing counterphase flicker paradoxically appears to move in the same direction as head and eye movements, ie opposite to the optic-flow field. The effect is robust and occurs over a wide range of flicker rates and pixel sizes. The phenomenon can be explained by reversed phi motion caused by apparent pixel movement between successive retinal images. The reversed motion provides a positive feedback control of the display, whereas under normal conditions retinal signals provide a negative feedback. This altered polarity invokes self-sustaining eye movements akin to involuntary optokinetic nystagmus.


2014 ◽  
Vol 26 (11) ◽  
pp. 2652-2668 ◽  
Author(s):  
Florian Raudies ◽  
Rick O. Gilmore

Visual motion direction ambiguities due to edge-aperture interaction might be resolved by speed priors, but scant empirical data support this hypothesis. We measured optic flow and gaze positions of walking mothers and the infants they carried. Empirically derived motion priors for infants are vertically elongated and shifted upward relative to mothers. Skewed normal distributions fitted to estimated retinal speeds peak at values above 20[Formula: see text]/sec.


2016 ◽  
Author(s):  
Kit D. Longden ◽  
Martina Wicklein ◽  
Benjamin J. Hardcastle ◽  
Stephen J. Huston ◽  
Holger G. Krapp

SummaryMany animals use the visual motion generated by travelling in a line, the translatory optic flow, to successfully navigate obstacles: near objects appear larger and to move more quickly than distant ones. Flies are experts at navigating cluttered environments, and while their visual processing of rotatory optic flow is understood in exquisite detail, how they process translatory optic flow remains a mystery. Here, we present novel cell types that have motion receptive fields matched to translation self-motion, the vertical translation (VT) cells. One of these, the VT1 cell, encodes forwards sideslip self-motion, and fires action potentials in clusters of spikes, spike bursts. We show that the spike burst coding is size and speed-tuned, and is selectively modulated by parallax motion, the relative motion experienced during translation. These properties are spatially organized, so that the cell is most excited by clutter rather than isolated objects. When the fly is presented with a simulation of flying past an elevated object, the spike burst activity is modulated by the height of the object, and the single spike rate is unaffected. When the moving object alone is experienced, the cell is weakly driven. Meanwhile, the VT2-3 cells have motion receptive fields matched to the lift axis. In conjunction with previously described horizontal cells, the VT cells have the properties required for the fly to successfully navigate clutter and encode its movements along near cardinal axes of thrust, lift and forward sideslip.


Sign in / Sign up

Export Citation Format

Share Document