The effect of variations in control-display ratio and exponential time delay on tracking performance.

1954 ◽  
Author(s):  
Marty R. Rockway
2017 ◽  
Vol 19 (4) ◽  
pp. 1508-1518 ◽  
Author(s):  
Xi-Sheng Zhan ◽  
Zhu-Jun Zhou ◽  
Jie Wu ◽  
Tao Han

2000 ◽  
Vol 9 (4) ◽  
pp. 337-349 ◽  
Author(s):  
Corinna Lathan ◽  
Kevin Cleary ◽  
Laura Traynor

Computed tomography (CT)-directed needle biopsies are routinely performed to gather tissue samples near the spine. As currently practiced, this procedure requires a great deal of spatial reasoning, skill, and training on the part of the interventional radiologist. Our goal was to evaluate the procedure through a task analysis and to make recommendations as to how the procedure could be improved through technological intervention. To this end, a spine biopsy surgical simulator was developed to mimic the current procedure and to serve as a development testbed for procedure innovation. Our methods for looking at the biopsy procedure itself included a task analysis (which produces a detailed list of tasks needed to complete a goal, their order, and time to completion) and an evaluation of human performance measures related to our simulator interface. Experiments were run to examine the effects of force and visual feedback on path-tracking performance and to determine the effects of time delay in the visual feedback on path-tracking performance. Force feedback improved performance in the conditions with visual feedback and in the conditions with visual feedback and time delay.


2019 ◽  
Vol 18 (4) ◽  
pp. 1012-1022 ◽  
Author(s):  
Jun-Wei Hu ◽  
Xi-Sheng Zhan ◽  
Jie Wu ◽  
Huai-Cheng Yan

2017 ◽  
Vol 66 (4) ◽  
pp. 693-704 ◽  
Author(s):  
Talar Sadalla ◽  
Dariusz Horla ◽  
Wojciech Giernacki ◽  
Piotr Kozierski

Abstract The paper aims at presenting the influence of an open-loop time delay on the stability and tracking performance of a second-order open-loop system and continuoustime fractional-order PI controller. The tuning method of this controller is based on Hermite- Biehler and Pontryagin theorems, and the tracking performance is evaluated on the basis of two integral performance indices, namely IAE and ISE. The paper extends the results and methodology presented in previous work of the authors to analysis of the influence of time delay on the closed-loop system taking its destabilizing properties into account, as well as concerning possible application of the presented results and used models.


2017 ◽  
Vol 37 (3) ◽  
pp. 322-334 ◽  
Author(s):  
Jing Guo ◽  
Ping Li ◽  
Huaicheng Yan ◽  
Hongliang Ren

Purpose The purpose of this paper is to design a model-based bilateral teleoperation method to improve the feedback force and velocity/position tracking for robotic-assisted tasks (such as palpation, etc.) under constant and/or varying time delay with environment dynamic property. Time delay existing in bilateral teleoperation easily destabilizes the system. Proper control strategies are able to make the system stable, but at the cost of compromised performance. Model-based bilateral teleoperation is designed to achieve enhanced performance of this time-delayed system, but an accurate model is required. Design/methodology/approach Viscoelastic model has been used to describe the robot tool-soft tissue interaction behavior. Kevin-Boltzmann (K-B) model is selected to model the soft tissue behavior due to its good accuracy, transient and linearity properties among several viscoelastic models. In this work, the K-B model is designed at the master side to generate a virtual environment of remote robotic tool-soft tissue interaction. In order to obtain improved performance, a self perturbing recursive least square (SPRLS) algorithm is developed to on-line update the necessary parameters of the environment with varying dynamics. Findings With fast and optimal on-line estimation of primary parameters of the K-B model, the reflected force of the model-based bilateral teleoperation at the master side is improved as well as the position/velocity tracking performance. This model-based design in the bilateral teleoperation avoids the stability issue caused by time delay in the communication channel since the exchanged information become position/velocity and estimated parameters of the used model. Even facing with big and varying time delay, the system keeps stably and enhanced tracking performance. Besides, the fast convergence of the SPRLS algorithm helps to track the time-varying dynamic of the environment, which satisfies the surgical applications as the soft tissue properties usually are not static. Originality/value The originality of this work lies in that an enhanced perception of bilateral teleoperation structure under constant/varying time delay that benefits robotic assisted tele-palpation (time varying environment dynamic) tasks is developed. With SPRLS algorithm to on-line estimate the main parameters of environment, the feedback perception of system can be enhanced with stable velocity/position tracking. The superior velocity/position and force tracking performance of the developed method makes it possible for future robotic-assisted tasks with long-distance communication.


Sign in / Sign up

Export Citation Format

Share Document