Dynamic Cognitive Control of Conflict From Task-Irrelevant Information: Evidence From Sequential Stroop and Flanker Tasks

2008 ◽  
Author(s):  
Mark E. Faust ◽  
Kristi S. Multhaup ◽  
Wayne Maury
2013 ◽  
Vol 17 (3) ◽  
pp. 610-629 ◽  
Author(s):  
HENRIKE K. BLUMENFELD ◽  
VIORICA MARIAN

Bilinguals have been shown to outperform monolinguals at suppressing task-irrelevant information and on overall speed during cognitive control tasks. Here, monolinguals’ and bilinguals’ performance was compared on two nonlinguistic tasks: a Stroop task (with perceptualStimulus–Stimulus conflictamong stimulus features) and a Simon task (withStimulus–Response conflict). Across two experiments testing bilinguals with different language profiles, bilinguals showed more efficient Stroop than Simon performance, relative to monolinguals, who showed fewer differences across the two tasks. Findings suggest that bilingualism may engage Stroop-type cognitive control mechanisms more than Simon-type mechanisms, likely due to increased Stimulus–Stimulus conflict during bilingual language processing. Findings are discussed in light of previous research on bilingual Stroop and Simon performance.


2010 ◽  
Vol 22 (3) ◽  
pp. 437-446 ◽  
Author(s):  
Jane Klemen ◽  
Christian Büchel ◽  
Mira Bühler ◽  
Mareike M. Menz ◽  
Michael Rose

Attentional interference between tasks performed in parallel is known to have strong and often undesired effects. As yet, however, the mechanisms by which interference operates remain elusive. A better knowledge of these processes may facilitate our understanding of the effects of attention on human performance and the debilitating consequences that disruptions to attention can have. According to the load theory of cognitive control, processing of task-irrelevant stimuli is increased by attending in parallel to a relevant task with high cognitive demands. This is due to the relevant task engaging cognitive control resources that are, hence, unavailable to inhibit the processing of task-irrelevant stimuli. However, it has also been demonstrated that a variety of types of load (perceptual and emotional) can result in a reduction of the processing of task-irrelevant stimuli, suggesting a uniform effect of increased load irrespective of the type of load. In the present study, we concurrently presented a relevant auditory matching task [n-back working memory (WM)] of low or high cognitive load (1-back or 2-back WM) and task-irrelevant images at one of three object visibility levels (0%, 50%, or 100%). fMRI activation during the processing of the task-irrelevant visual stimuli was measured in the lateral occipital cortex and found to be reduced under high, compared to low, WM load. In combination with previous findings, this result is suggestive of a more generalized load theory, whereby cognitive load, as well as other types of load (e.g., perceptual), can result in a reduction of the processing of task-irrelevant stimuli, in line with a uniform effect of increased load irrespective of the type of load.


2018 ◽  
Vol 19 (4) ◽  
pp. 829-844 ◽  
Author(s):  
Michele T. Diaz ◽  
Micah A. Johnson ◽  
Deborah M. Burke ◽  
Trong-Kha Truong ◽  
David J. Madden

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Dorottya Rusz ◽  
Erik Bijleveld ◽  
Michiel A. J. Kompier

Over a hundred prior studies show that reward-related distractors capture attention. It is less clear, however, whether and when reward-related distractors affect performance on tasks that require cognitive control. In this experiment, we examined whether reward-related distractors impair performance during a demanding arithmetic task. Participants (N = 81) solved math problems, while they were exposed to task-irrelevant stimuli that were previously associated with monetary rewards (vs. not). Although we found some evidence for reward learning in the training phase, results from the test phase showed no evidence that reward-related distractors harm cognitive performance. This null effect was invariant across different versions of our task. We examined the results further with Bayesian analyses, which showed positive evidence for the null. Altogether, the present study showed that reward-related distractors did not harm performance on a mental arithmetic task. When considered together with previous studies, the present study suggests that the negative impact of reward-related distractors on cognitive control is not as straightforward as it may seem, and that more research is needed to clarify the circumstances under which reward-related distractors harm cognitive control.


Author(s):  
Estée Rubien-Thomas ◽  
Nia Berrian ◽  
Alessandra Cervera ◽  
Binyam Nardos ◽  
Alexandra O. Cohen ◽  
...  

AbstractThe race of an individual is a salient physical feature that is rapidly processed by the brain and can bias our perceptions of others. How the race of others explicitly impacts our actions toward them during intergroup contexts is not well understood. In the current study, we examined how task-irrelevant race information influences cognitive control in a go/no-go task in a community sample of Black (n = 54) and White (n = 51) participants. We examined the neural correlates of behavioral effects using functional magnetic resonance imaging and explored the influence of implicit racial attitudes on brain-behavior associations. Both Black and White participants showed more cognitive control failures, as indexed by dprime, to Black versus White faces, despite the irrelevance of race to the task demands. This behavioral pattern was paralleled by greater activity to Black faces in the fusiform face area, implicated in processing face and in-group information, and lateral orbitofrontal cortex, associated with resolving stimulus-response conflict. Exploratory brain-behavior associations suggest different patterns in Black and White individuals. Black participants exhibited a negative association between fusiform activity and response time during impulsive errors to Black faces, whereas White participants showed a positive association between lateral OFC activity and cognitive control performance to Black faces when accounting for implicit racial associations. Together our findings propose that attention to race information is associated with diminished cognitive control that may be driven by different mechanisms for Black and White individuals.


Author(s):  
Rolf Ulrich ◽  
Laura Prislan ◽  
Jeff Miller

Abstract The Eriksen flanker task is a traditional conflict paradigm for studying the influence of task-irrelevant information on the processing of task-relevant information. In this task, participants are asked to respond to a visual target item (e.g., a letter) that is flanked by task-irrelevant items (e.g., also letters). Responses are typically faster and more accurate when the task-irrelevant information is response-congruent with the visual target than when it is incongruent. Several researchers have attributed the starting point of this flanker effect to poor selective filtering at a perceptual level (e.g., spotlight models), which subsequently produces response competition at post-perceptual stages. The present study examined whether a flanker-like effect could also be established within a bimodal analog of the flanker task with auditory irrelevant letters and visual target letters, which must be processed along different processing routes. The results of two experiments revealed that a flanker-like effect is also present with bimodal stimuli. In contrast to the unimodal flanker task, however, the effect only emerged when flankers and targets shared the same letter name, but not when they were different letters mapped onto the same response. We conclude that the auditory flankers can influence the time needed to recognize visual targets but do not directly activate their associated responses.


Sign in / Sign up

Export Citation Format

Share Document