scholarly journals The Replication Paradox: Combining Studies can Decrease Accuracy of Effect Size Estimates

2015 ◽  
Vol 19 (2) ◽  
pp. 172-182 ◽  
Author(s):  
Michèle B. Nuijten ◽  
Marcel A. L. M. van Assen ◽  
Coosje L. S. Veldkamp ◽  
Jelte M. Wicherts

Replication is often viewed as the demarcation between science and nonscience. However, contrary to the commonly held view, we show that in the current (selective) publication system replications may increase bias in effect size estimates. Specifically, we examine the effect of replication on bias in estimated population effect size as a function of publication bias and the studies’ sample size or power. We analytically show that incorporating the results of published replication studies will in general not lead to less bias in the estimated population effect size. We therefore conclude that mere replication will not solve the problem of overestimation of effect sizes. We will discuss the implications of our findings for interpreting results of published and unpublished studies, and for conducting and interpreting results of meta-analyses. We also discuss solutions for the problem of overestimation of effect sizes, such as discarding and not publishing small studies with low power, and implementing practices that completely eliminate publication bias (e.g., study registration).

2019 ◽  
Author(s):  
Amanda Kvarven ◽  
Eirik Strømland ◽  
Magnus Johannesson

Andrews & Kasy (2019) propose an approach for adjusting effect sizes in meta-analysis for publication bias. We use the Andrews-Kasy estimator to adjust the result of 15 meta-analyses and compare the adjusted results to 15 large-scale multiple labs replication studies estimating the same effects. The pre-registered replications provide precisely estimated effect sizes, which do not suffer from publication bias. The Andrews-Kasy approach leads to a moderate reduction of the inflated effect sizes in the meta-analyses. However, the approach still overestimates effect sizes by a factor of about two or more and has an estimated false positive rate of between 57% and 100%.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Liansheng Larry Tang ◽  
Michael Caudy ◽  
Faye Taxman

Multiple meta-analyses may use similar search criteria and focus on the same topic of interest, but they may yield different or sometimes discordant results. The lack of statistical methods for synthesizing these findings makes it challenging to properly interpret the results from multiple meta-analyses, especially when their results are conflicting. In this paper, we first introduce a method to synthesize the meta-analytic results when multiple meta-analyses use the same type of summary effect estimates. When meta-analyses use different types of effect sizes, the meta-analysis results cannot be directly combined. We propose a two-step frequentist procedure to first convert the effect size estimates to the same metric and then summarize them with a weighted mean estimate. Our proposed method offers several advantages over existing methods by Hemming et al. (2012). First, different types of summary effect sizes are considered. Second, our method provides the same overall effect size as conducting a meta-analysis on all individual studies from multiple meta-analyses. We illustrate the application of the proposed methods in two examples and discuss their implications for the field of meta-analysis.


2019 ◽  
Vol 3 ◽  
Author(s):  
Niclas Kuper ◽  
Antonia Bott

Moral licensing describes the phenomenon that displaying moral behavior can lead to subsequent immoral behavior. This is usually explained by the idea that an initial moral act affirms the moral self-image and hence licenses subsequent immoral acts. Previous meta-analyses on moral licensing indicate significant overall effects of d> .30. However, several large replication studies have either not found the effect or reported a substantially smaller effect size. The present article investigated whether this can be attributed to publication bias. Datasets from two previous meta-analyses on moral licensing were compared and when necessary modified. The larger dataset was used for the present analyses. Using PET-PEESE and a three-parameter-selection-model (3-PSM), we found some evidence for publication bias. The adjusted effect sizes were reduced to d= -0.05, p= .64 and d= 0.18, p= .002, respectively. While the first estimate could be an underestimation, we also found indications that the second estimate might exaggerate the true effect size. It is concluded that both the evidence for and the size of moral licensing effects has likely been inflated by publication bias. Furthermore, our findings indicate that culture moderates the moral licensing effect. Recommendations for future meta-analytic and empirical work are given. Subsequent studies on moral licensing should be adequately powered and ideally pre-registered.  


2021 ◽  
Vol 44 ◽  
Author(s):  
Robert M. Ross ◽  
Robbie C. M. van Aert ◽  
Olmo R. van den Akker ◽  
Michiel van Elk

Abstract Lee and Schwarz interpret meta-analytic research and replication studies as providing evidence for the robustness of cleansing effects. We argue that the currently available evidence is unconvincing because (a) publication bias and the opportunistic use of researcher degrees of freedom appear to have inflated meta-analytic effect size estimates, and (b) preregistered replications failed to find any evidence of cleansing effects.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252415
Author(s):  
Ivan Ropovik ◽  
Matus Adamkovic ◽  
David Greger

Because negative findings have less chance of getting published, available studies tend to be a biased sample. This leads to an inflation of effect size estimates to an unknown degree. To see how meta-analyses in education account for publication bias, we surveyed all meta-analyses published in the last five years in the Review of Educational Research and Educational Research Review. The results show that meta-analyses usually neglect publication bias adjustment. In the minority of meta-analyses adjusting for bias, mostly non-principled adjustment methods were used, and only rarely were the conclusions based on corrected estimates, rendering the adjustment inconsequential. It is argued that appropriate state-of-the-art adjustment (e.g., selection models) should be attempted by default, yet one needs to take into account the uncertainty inherent in any meta-analytic inference under bias. We conclude by providing practical recommendations on dealing with publication bias.


2017 ◽  
Vol 28 (11) ◽  
pp. 1547-1562 ◽  
Author(s):  
Samantha F. Anderson ◽  
Ken Kelley ◽  
Scott E. Maxwell

The sample size necessary to obtain a desired level of statistical power depends in part on the population value of the effect size, which is, by definition, unknown. A common approach to sample-size planning uses the sample effect size from a prior study as an estimate of the population value of the effect to be detected in the future study. Although this strategy is intuitively appealing, effect-size estimates, taken at face value, are typically not accurate estimates of the population effect size because of publication bias and uncertainty. We show that the use of this approach often results in underpowered studies, sometimes to an alarming degree. We present an alternative approach that adjusts sample effect sizes for bias and uncertainty, and we demonstrate its effectiveness for several experimental designs. Furthermore, we discuss an open-source R package, BUCSS, and user-friendly Web applications that we have made available to researchers so that they can easily implement our suggested methods.


2018 ◽  
Author(s):  
Niclas Kuper ◽  
Antonia Bott

Moral licensing describes the phenomenon that displaying moral behavior can lead to subsequent immoral behavior. This is usually explained by the idea that an initial moral act affirms the moral self-image and hence licenses subsequent immoral acts. Previous meta-analyses on moral licensing indicate significant overall effects of d > .30. However, several large replication studies have either not found the effect or reported a substantially smaller effect size. The present article investigated whether this can be attributed to publication bias. Datasets from two previous meta-analyses on moral licensing were compared and when necessary modified. The larger dataset was used for the present analyses. Using PET-PEESE and a three-parameter-selection-model (3-PSM), we found some evidence for publication bias. The adjusted effect sizes were reduced to d = -.05, p = .64 and d = .18, p = .002, respectively. While the first estimate could be an underestimation, we also found indications that the second estimate might exaggerate the true effect size. It is concluded that both the evidence for and the size of moral licensing effects has likely been inflated by publication bias. Furthermore, our findings indicate that culture moderates the moral licensing effect. Recommendations for future meta-analytic and empirical work are given. Subsequent studies on moral licensing should be adequately powered and ideally pre-registered.


2018 ◽  
Author(s):  
Michele B. Nuijten ◽  
Marcel A. L. M. van Assen ◽  
Hilde Augusteijn ◽  
Elise Anne Victoire Crompvoets ◽  
Jelte M. Wicherts

In this meta-study, we analyzed 2,442 effect sizes from 131 meta-analyses in intelligence research, published from 1984 to 2014, to estimate the average effect size, median power, and evidence for bias. We found that the average effect size in intelligence research was a Pearson’s correlation of .26, and the median sample size was 60. Furthermore, across primary studies, we found a median power of 11.9% to detect a small effect, 54.5% to detect a medium effect, and 93.9% to detect a large effect. We documented differences in average effect size and median estimated power between different types of in intelligence studies (correlational studies, studies of group differences, experiments, toxicology, and behavior genetics). On average, across all meta-analyses (but not in every meta-analysis), we found evidence for small study effects, potentially indicating publication bias and overestimated effects. We found no differences in small study effects between different study types. We also found no convincing evidence for the decline effect, US effect, or citation bias across meta-analyses. We conclude that intelligence research does show signs of low power and publication bias, but that these problems seem less severe than in many other scientific fields.


2020 ◽  
Vol 46 (2-3) ◽  
pp. 343-354 ◽  
Author(s):  
Timothy R Levine ◽  
René Weber

Abstract We examined the interplay between how communication researchers use meta-analyses to make claims and the prevalence, causes, and implications of unresolved heterogeneous findings. Heterogeneous findings can result from substantive moderators, methodological artifacts, and combined construct invalidity. An informal content analysis of meta-analyses published in four elite communication journals revealed that unresolved between-study effect heterogeneity was ubiquitous. Communication researchers mainly focus on computing mean effect sizes, to the exclusion of how effect sizes in primary studies are distributed and of what might be driving effect size distributions. We offer four recommendations for future meta-analyses. Researchers are advised to be more diligent and sophisticated in testing for heterogeneity. We encourage greater description of how effects are distributed, coupled with greater reliance on graphical displays. We council greater recognition of combined construct invalidity and advocate for content expertise. Finally, we endorse greater awareness and improved tests for publication bias and questionable research practices.


2020 ◽  
Vol 8 (4) ◽  
pp. 36
Author(s):  
Michèle B. Nuijten ◽  
Marcel A. L. M. van Assen ◽  
Hilde E. M. Augusteijn ◽  
Elise A. V. Crompvoets ◽  
Jelte M. Wicherts

In this meta-study, we analyzed 2442 effect sizes from 131 meta-analyses in intelligence research, published from 1984 to 2014, to estimate the average effect size, median power, and evidence for bias. We found that the average effect size in intelligence research was a Pearson’s correlation of 0.26, and the median sample size was 60. Furthermore, across primary studies, we found a median power of 11.9% to detect a small effect, 54.5% to detect a medium effect, and 93.9% to detect a large effect. We documented differences in average effect size and median estimated power between different types of intelligence studies (correlational studies, studies of group differences, experiments, toxicology, and behavior genetics). On average, across all meta-analyses (but not in every meta-analysis), we found evidence for small-study effects, potentially indicating publication bias and overestimated effects. We found no differences in small-study effects between different study types. We also found no convincing evidence for the decline effect, US effect, or citation bias across meta-analyses. We concluded that intelligence research does show signs of low power and publication bias, but that these problems seem less severe than in many other scientific fields.


Sign in / Sign up

Export Citation Format

Share Document