Model Atmosphere Calculation of the Solar Oblateness

Nature ◽  
1969 ◽  
Vol 221 (5181) ◽  
pp. 646-648 ◽  
Author(s):  
B. R. DURNEY ◽  
I. W. ROXBURGH
1985 ◽  
Vol 111 ◽  
pp. 303-329
Author(s):  
Bengt Gustafsson ◽  
Uffe Graae-Jørgensen

The use of photometric and spectroscopic criteria, calibrated by model-atmosphere calculations, for determining effective temperatures, surface gravities and chemical compositions of stars is illustrated and commented on. The accuracy that can be obtained today in such calibrations is discussed, as well as possible ways of improving this accuracy further for different types of stars.


2002 ◽  
Vol 12 ◽  
pp. 676-679
Author(s):  
Ruth C. Peterson

AbstractRecent results are reviewed for two methods of luminosity calibration based on high-resolution spectroscopy. The first relies onTeff/loggdeterminations from model-atmosphere analyses based on high-resolution spectra. This method is physically well founded but operationally demanding, and requires advance knowledge of stellar mass. The second, W-B, stems from the empirical relationship between luminosity and the width of chromospheric emission lines first established by Wilson and Bappu. Its physical basis is only partially understood, however, and the calibration depends on stellar metallicity and on the choice of lines.BothTeff/loggand W-B easily distinguish cool dwarfs from cool giants. Generally reasonable agreement is found between distances derived from Hipparcos parallaxes and those inferred from the loggvalues derived for nearby dwarfs with relatively well-known Hipparcos parallaxes, σ(π)/π < 0.2. Constraining Hipparcos parallaxes star-by-star is not possible at present. Improvements are suggested for both approaches.


2009 ◽  
Vol 22 (10) ◽  
pp. 2639-2658 ◽  
Author(s):  
Grant Branstator ◽  
Frank Selten

Abstract A 62-member ensemble of coupled general circulation model (GCM) simulations of the years 1940–2080, including the effects of projected greenhouse gas increases, is examined. The focus is on the interplay between the trend in the Northern Hemisphere December–February (DJF) mean state and the intrinsic modes of variability of the model atmosphere as given by the upper-tropospheric meridional wind. The structure of the leading modes and the trend are similar. Two commonly proposed explanations for this similarity are considered. Several results suggest that this similarity in most respects is consistent with an explanation involving patterns that result from the model dynamics being well approximated by a linear system. Specifically, the leading intrinsic modes are similar to the leading modes of a stochastic model linearized about the mean state of the GCM atmosphere, trends in GCM tropical precipitation appear to excite the leading linear pattern, and the probability density functions (PDFs) of prominent circulation patterns are quasi-Gaussian. There are, on the other hand, some subtle indications that an explanation for the similarity involving preferred states (which necessarily result from nonlinear influences) has some relevance. For example, though unimodal, PDFs of prominent patterns have departures from Gaussianity that are suggestive of a mixture of two Gaussian components. And there is some evidence of a shift in probability between the two components as the climate changes. Interestingly, contrary to the most prominent theory of the influence of nonlinearly produced preferred states on climate change, the centroids of the components also change as the climate changes. This modification of the system’s preferred states corresponds to a change in the structure of its dominant patterns. The change in pattern structure is reproduced by the linear stochastic model when its basic state is modified to correspond to the trend in the general circulation model’s mean atmospheric state. Thus, there is a two-way interaction between the trend and the modes of variability.


2009 ◽  
Vol 5 (S262) ◽  
pp. 385-387
Author(s):  
Renee Mateluna ◽  
Douglas Geisler ◽  
Sandro Villanova

AbstractWe present results of a detailed model atmosphere abundance analysis for a variety of elements, including Fe, Ca, Si, Ti, Sc, Ni, Cr and Ba for a number of giants in the surrounding field of the LMC cluster H11, obtained from high resolution FLAMES@VLT spectra.


2018 ◽  
Vol 620 ◽  
pp. A54 ◽  
Author(s):  
C. Saffe ◽  
M. Flores ◽  
P. Miquelarena ◽  
F. M. López ◽  
M. Jaque Arancibia ◽  
...  

Aims. In an effort to improve spectroscopic methods of stellar parameters determination, we implemented non-solar-scaled opacities in a simultaneous derivation of fundamental parameters and abundances. We wanted to compare the results with the usual solar-scaled method using a sample of solar-type and evolved stars. Methods. We carried out a high-precision determination of stellar parameters and abundances by applying non-solar-scaled opacities and model atmospheres. Our sample is composed of 20 stars, including main sequence and evolved objects. The stellar parameters were determined by imposing ionization and excitation equilibrium of Fe lines, with an updated version of the FUNDPAR program, together with plane-parallel ATLAS12 model atmospheres and the MOOG code. Opacities for an arbitrary composition and vmicro were calculated through the opacity sampling (OS) method. We used solar-scaled models in the first step, and then continued the process, but scaled to the abundance values found in the previous step (i.e. non-solar-scaled). The process finishes when the stellar parameters of one step are the same as in the previous step, i.e. we use a doubly iterated method. Results. We obtained a small difference in stellar parameters derived with non-solar-scaled opacities compared to classical solar-scaled models. The differences in Teff, log g, and [Fe/H] amount to 26 K, 0.05 dex, and 0.020 dex for the stars in our sample. These differences can be considered the first estimation of the error due to the use of classical solar-scaled opacities to derive stellar parameters with solar-type and evolved stars. We note that some chemical species could also show an individual variation greater than those of the [Fe/H] (up to ~0.03 dex) and varying from one species to another, obtaining a chemical pattern difference between the two methods. This means that condensation temperature Tc trends could also present a variation. We include an example showing that using non-solar-scaled opacities, the solution found with the classical solar-scaled method indeed cannot always verify the excitation and ionization balance conditions required for a model atmosphere. We discuss in the text the significance of the differences obtained when using solar-scaled versus non-solar-scaled methods. Conclusions. We consider that the use of the non-solar-scaled opacities is not mandatory in every statistical study with large samples of stars. However, for those high-precision works whose results depend on the mutual comparison of different chemical species (such as the analysis of condensation temperature Tc trends), we consider its application to be worthwhile. To date, this is probably one of the most precise spectroscopic methods for stellar parameter derivation.


2017 ◽  
Vol 10 (11) ◽  
pp. 4121-4134 ◽  
Author(s):  
Peter R. Colarco ◽  
Santiago Gassó ◽  
Changwoo Ahn ◽  
Virginie Buchard ◽  
Arlindo M. da Silva ◽  
...  

Abstract. We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI near-UV aerosol retrieval algorithms (known as OMAERUV) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining to the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600 and 1013.25 hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial-resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.


1975 ◽  
Vol 34 (5) ◽  
pp. 296-296
Author(s):  
H. A. Hill ◽  
P. D. Clayton ◽  
D. L. Patz ◽  
A. W. Healy ◽  
R. T. Stebbins ◽  
...  
Keyword(s):  

1993 ◽  
Vol 138 ◽  
pp. 87-97 ◽  
Author(s):  
Robert L. Kurucz

AbstractI have developed a new version of my model atmosphere program called ATLAS12. It recognizes more than 1000 species, each in up to 10 isotopic forms, including all ions of the elements up through Zn and the first 5 ions of heavier elements up through Es. The elemental abundances are treated as variable with depth. ATLAS12 has 6 input files of line data containing 58,000,000 atomic and molecular lines. For each line the wavelength, identification, lower energy level, gf, radiative, Stark, and van der Waals damping constants are packed into 16 bytes. At each wavelength point in a frequency integration the profiles of all the significant nearby lines are computed and summed. The program and line files will be distributed in the fall of 1992.There are no significant differences at A0 between an opacity-sampled model computed with ATLAS12 and opacity-distribution-function model computed with ATLAS9. ATLAS12 allows arbitrary abundances but is slower. The new program can be used to produce improved models for Am and Ap stars that include the effects of millions of lines.


2009 ◽  
Vol 498 (2) ◽  
pp. 527-542 ◽  
Author(s):  
A. Önehag ◽  
B. Gustafsson ◽  
K. Eriksson ◽  
B. Edvardsson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document