Inducible repair of oxidative DNA damage in Escherichia coli

Nature ◽  
1983 ◽  
Vol 304 (5925) ◽  
pp. 466-468 ◽  
Author(s):  
Bruce Demple ◽  
James Halbrook
1986 ◽  
Vol 6 (2) ◽  
pp. 586-592 ◽  
Author(s):  
L Marcucci ◽  
F Gigliani ◽  
P A Battaglia ◽  
R Bosi ◽  
E Sporeno ◽  
...  

The pR plasmid, which enhances the survival of Escherichia coli C600 exposed to UV light by induction of the SOS regulatory mechanism, showed the same effect when it transformed mouse LTA cells (tk-, aprt-). With Tn5 insertion mutagenesis which inactivates UV functions in the pR plasmid, we recognized two different regions of the plasmid, uvp1 and uvp2. These pR UVR- mutants exhibited the same effect in LTA transformed cells, demonstrating that resistance to UV light, carried by the pR plasmid, was really due to the expression of these two regions, which were also in the mouse cells. Statistical analysis showed that the expression of the uvp1 and uvp2 regions significantly increased (P less than 0.01) the survival upon exposure to UV light in mouse cells and bacteria. These results might suggest the presence of an inducible repair response to DNA damage in mouse LTA cells.


2014 ◽  
Vol 42 (21) ◽  
pp. 13228-13241 ◽  
Author(s):  
Godefroid Charbon ◽  
Louise Bjørn ◽  
Belén Mendoza-Chamizo ◽  
Jakob Frimodt-Møller ◽  
Anders Løbner-Olesen

1996 ◽  
Vol 178 (13) ◽  
pp. 3885-3892 ◽  
Author(s):  
M M Slupska ◽  
C Baikalov ◽  
W M Luther ◽  
J H Chiang ◽  
Y F Wei ◽  
...  

1999 ◽  
Vol 19 (5) ◽  
pp. 3779-3787 ◽  
Author(s):  
Ingrun Alseth ◽  
Lars Eide ◽  
Manuela Pirovano ◽  
Torbjørn Rognes ◽  
Erling Seeberg ◽  
...  

ABSTRACT Endonuclease III from Escherichia coli is the prototype of a ubiquitous DNA repair enzyme essential for the removal of oxidized pyrimidine base damage. The yeast genome project has revealed the presence of two genes in Saccharomyces cerevisiae,NTG1 and NTG2, encoding proteins with similarity to endonuclease III. Both contain the highly conserved helix-hairpin-helix motif, whereas only one (Ntg2) harbors the characteristic iron-sulfur cluster of the endonuclease III family. We have characterized these gene functions by mutant and enzyme analysis as well as by gene expression and intracellular localization studies. Targeted gene disruption of NTG1 and NTG2produced mutants with greatly increased spontaneous and hydrogen peroxide-induced mutation frequency relative to the wild type, and the mutation response was further increased in the double mutant. Both enzymes were found to remove thymine glycol and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (faPy) residues from DNA with high efficiency. However, on UV-irradiated DNA, saturating concentrations of Ntg2 removed only half of the cytosine photoproducts released by Ntg1. Conversely, 5-hydroxycytosine was removed efficiently only by Ntg2. The enzymes appear to have different reaction modes, as judged from much higher affinity of Ntg2 for damaged DNA and more efficient borhydride trapping of Ntg1 to abasic sites in DNA despite limited DNA binding. Northern blot and promoter fusion analysis showed that NTG1 is inducible by cell exposure to DNA-damaging agents, whereas NTG2 is constitutively expressed. Ntg2 appears to be a nuclear enzyme, whereas Ntg1 was sorted both to the nucleus and to the mitochondria. We conclude that functions of both NTG1 and NTG2 are important for removal of oxidative DNA damage in yeast.


1987 ◽  
Vol 7 (1) ◽  
pp. 26-32 ◽  
Author(s):  
P W Doetsch ◽  
W D Henner ◽  
R P Cunningham ◽  
J H Toney ◽  
D E Helland

We have compared the sites of nucleotide incision on DNA damaged by oxidizing agents when cleavage is mediated by either Escherichia coli endonuclease III or an endonuclease present in bovine and human cells. E. coli endonuclease III, the bovine endonuclease isolated from calf thymus, and the human endonuclease partially purified from HeLa and CEM-C1 lymphoblastoid cells incised DNA damaged with osmium tetroxide, ionizing radiation, or high doses of UV light at sites of pyrimidines. For each damaging agent studied, regardless of whether the E. coli, bovine, or human endonuclease was used, the same sequence specificity of cleavage was observed. We detected this endonuclease activity in a variety of human fibroblasts derived from normal individuals as well as individuals with the DNA repair deficiency diseases ataxia telangiectasia and xeroderma pigmentosum. The highly conserved nature of such a DNA damage-specific endonuclease suggests that a common pathway exists in bacteria, humans, and other mammals for the reversal of certain types of oxidative DNA damage.


Chemosphere ◽  
2015 ◽  
Vol 135 ◽  
pp. 379-386 ◽  
Author(s):  
Zhilan Chen ◽  
Qiaohong Zhou ◽  
Dandan Zou ◽  
Yun Tian ◽  
Biyun Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document