The colony stimulating factor-1 receptor associates with and activates phosphatidylinositol-3 kinase

Nature ◽  
1989 ◽  
Vol 342 (6250) ◽  
pp. 699-702 ◽  
Author(s):  
Lyuba Varticovski ◽  
Brian Druker ◽  
Deborah Morrison ◽  
Lewis Cantley ◽  
Thomas Roberts
1991 ◽  
Vol 11 (5) ◽  
pp. 2489-2495
Author(s):  
J R Downing ◽  
S A Shurtleff ◽  
C J Sherr

A peptide antiserum (anti-A) directed to the intracellular, juxtamembrane region (residues 552 to 574) of the human colony-stimulating factor 1 receptor (CSF-1R) precipitated only ligand-activated, native receptors from solution but bound to unstimulated forms after their denaturation. Two peptide antisera (anti-KI1 and -KI2), directed to residues 679 to 700 and 701 to 721, respectively, in the CSF-1R kinase insert (KI) domain and including mapped sites of ligand-induced phosphorylation at Tyr-699 and Tyr-708, bound at least 80% of the receptor molecules expressed in either CSF-1-stimulated or unstimulated cells. Immune complexes formed with anti-KI1, anti-A, or a peptide antiserum to the CSF-1R carboxyl terminus (anti-C-ter) coprecipitated CSF-1R complexed to a phosphatidylinositol 3-kinase (PtdIns 3-K) from CSF-1-stimulated cells, whereas anti-KI2 serum did not. In an in vitro assay, binding of CSF-1R to PtdIns 3-K required receptor tyrosine phosphorylation but not CSF-1R-mediated phosphorylation of the lipid kinase, and the association was specifically blocked by anti-KI2 or antibodies to phosphotyrosine. Neither anti-KI1, anti-A, nor anti-C-ter serum inhibited binding. We conclude that (i) only a minority of ligand-activated receptors form a stable complex with PtdIns 3-K in vivo, (ii) efficient binding of the lipid kinase requires receptor tyrosine phosphorylation within the CSF-1R KI domain, and (iii) a region within the KI domain defined by residues 701 to 721 at least partially overlaps the PtdIns 3-K binding site.


2000 ◽  
Vol 20 (18) ◽  
pp. 6779-6798 ◽  
Author(s):  
Angel W.-M. Lee ◽  
David J. States

ABSTRACT Colony-stimulating factor 1 (CSF-1) supports the proliferation, survival, and differentiation of bone marrow-derived cells of the monocytic lineage. In the myeloid progenitor 32D cell line expressing CSF-1 receptor (CSF-1R), CSF-1 activation of the extracellular signal-regulated kinase (ERK) pathway is both Ras and phosphatidylinositol 3-kinase (PI3-kinase) dependent. PI3-kinase inhibition did not influence events leading to Ras activation. Using the activity of the PI3-kinase effector, Akt, as readout, studies with dominant-negative and oncogenic Ras failed to place PI3-kinase downstream of Ras. Thus, PI3-kinase appears to act in parallel to Ras. PI3-kinase inhibitors enhanced CSF-1-stimulated A-Raf and c-Raf-1 activities, and dominant-negative A-Raf but not dominant-negative c-Raf-1 reduced CSF-1-provoked ERK activation, suggesting that A-Raf mediates a part of the stimulatory signal from Ras to MEK/ERK, acting in parallel to PI3-kinase. Unexpectedly, a CSF-1R lacking the PI3-kinase binding site (ΔKI) remained capable of activating MEK/ERK in a PI3-kinase-dependent manner. To determine if Src family kinases (SFKs) are involved, we demonstrated that CSF-1 activated Fyn and Lyn in cells expressing wild-type (WT) or ΔKI receptors. Moreover, CSF-1-induced Akt activity in cells expressing ΔKI is SFK dependent since Akt activation was prevented by pharmacological or genetic inhibition of SFK activity. The docking protein Gab2 may link SFK to PI3-kinase. CSF-1 induced Gab2 tyrosyl phosphorylation and association with PI3-kinase in cells expressing WT or ΔKI receptors. However, only in ΔKI cells are these events prevented by PP1. Thus in myeloid progenitors, CSF-1 can activate the PI3-kinase/Akt pathway by at least two mechanisms, one involving direct receptor binding and one involving SFKs.


1991 ◽  
Vol 11 (5) ◽  
pp. 2489-2495 ◽  
Author(s):  
J R Downing ◽  
S A Shurtleff ◽  
C J Sherr

A peptide antiserum (anti-A) directed to the intracellular, juxtamembrane region (residues 552 to 574) of the human colony-stimulating factor 1 receptor (CSF-1R) precipitated only ligand-activated, native receptors from solution but bound to unstimulated forms after their denaturation. Two peptide antisera (anti-KI1 and -KI2), directed to residues 679 to 700 and 701 to 721, respectively, in the CSF-1R kinase insert (KI) domain and including mapped sites of ligand-induced phosphorylation at Tyr-699 and Tyr-708, bound at least 80% of the receptor molecules expressed in either CSF-1-stimulated or unstimulated cells. Immune complexes formed with anti-KI1, anti-A, or a peptide antiserum to the CSF-1R carboxyl terminus (anti-C-ter) coprecipitated CSF-1R complexed to a phosphatidylinositol 3-kinase (PtdIns 3-K) from CSF-1-stimulated cells, whereas anti-KI2 serum did not. In an in vitro assay, binding of CSF-1R to PtdIns 3-K required receptor tyrosine phosphorylation but not CSF-1R-mediated phosphorylation of the lipid kinase, and the association was specifically blocked by anti-KI2 or antibodies to phosphotyrosine. Neither anti-KI1, anti-A, nor anti-C-ter serum inhibited binding. We conclude that (i) only a minority of ligand-activated receptors form a stable complex with PtdIns 3-K in vivo, (ii) efficient binding of the lipid kinase requires receptor tyrosine phosphorylation within the CSF-1R KI domain, and (iii) a region within the KI domain defined by residues 701 to 721 at least partially overlaps the PtdIns 3-K binding site.


1996 ◽  
Vol 320 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Varuni KANAGASUNDARAM ◽  
Anthony JAWOROWSKI ◽  
John A HAMILTON

Colony stimulating factor-1 (CSF-1) stimulation of the macrophage cell line BAC1.2F5 and murine bone marrow-derived macrophages resulted in tyrosine phosphorylation of phosphatidylinositol-3 kinase (PI-3 kinase) p85α and its stable association with several tyrosine phosphorylated proteins, including CSF-1 receptor (p165), p120, p95 and p55–p60. p120 co-migrated with the product of the protooncogene c-cbl in anti-p85α immunoprecipitates, and associated with p85α in a rapid and transient manner. Reciprocal experiments confirmed the presence of p85α in anti-Cbl immunoprecipitates on CSF-1 stimulation of macrophages. PI-3 kinase immunoprecipitates from the myeloid FDC-P1 cell line expressing mutant CSF-1 receptor (Y721F), which does not associate with PI-3 kinase, still contained Cbl. The identity of the tyrosine phosphorylated protein p95 remains unknown. The interaction between p85α and the tyrosine phosphorylated proteins survived anion-exchange chromatography, suggesting perhaps the presence of a stable complex; furthermore, in CSF-1-treated BAC1.2F5 cell extracts, only one of the two pools of PI-3 kinase separated by chromatography was present in this putative complex. The association did not appear to correlate with proliferation, since a similar interaction between p85α and tyrosine phosphorylated proteins was also observed in poorly proliferating resident peritoneal macrophages stimulated with CSF-1. The possible significance of these findings for CSF-1-regulated macrophage functions is discussed.


Endocrinology ◽  
2009 ◽  
Vol 150 (11) ◽  
pp. 4989-4998 ◽  
Author(s):  
Chandi C. Mandal ◽  
Goutam Ghosh Choudhury ◽  
Nandini Ghosh-Choudhury

Murine spleen cells produce mature osteoclasts when cocultured with osteoblastic cells. Colony-stimulating factor (CSF)-1 is the growth factor required for differentiating the monocyte-macrophage precursor cells into preosteoclasts. Bone morphogenic protein (BMP) signaling in osteoblasts regulates bone mass in mice, suggesting a role of BMP in osteoclastogenesis along with osteoblast activity. The intracellular signal transduction cross talk regulating the osteoblastic production of CSF-1 as a mechanism of BMP-induced osteoclastogenesis is described in this report. We have recently described the involvement of Smad 1/5 in BMP-2-induced CSF-1 expression and osteoclast formation. In this study, using the pharmacological inhibitors and the adenovirus (Ad) vectors expressing dominant-negative (DN) phosphatidylinositol 3 kinase (PI3K), the PI3K-signaling inhibitor, phosphatase and tensin homolog deleted in chromosome 10 (PTEN) or DN Akt kinase in the in vitro coculture assay, we show an essential role of the lipid kinase cascade in BMP-2-mediated multinucleated osteoclast formation and CSF-1 mRNA expression, transcription, and secretion. Inhibition of PI3K/Akt signaling blocked the binding of Smads 1/5 to the CSF-1 BMP-responsive element present in the CSF-1 promoter, resulting in attenuation of Smad-dependent CSF-1 transcription. Furthermore, PI3K inhibition and DN Akt prevented association of the transcriptional coactivator, CREB (cAMP response element binding protein) binding protein (CBP), with Smads 1/5. Together, these data for the first time demonstrate that PI3K-dependent Akt activation regulates BMP-2-induced CSF-1 expression and provides a mechanism for osteoblastic cell-assisted osteoclast differentiation.


Blood ◽  
2009 ◽  
Vol 114 (17) ◽  
pp. 3633-3641 ◽  
Author(s):  
Arnaud Jacquel ◽  
Naïma Benikhlef ◽  
Jérôme Paggetti ◽  
Najoua Lalaoui ◽  
Leslie Guery ◽  
...  

Abstract The differentiation of human peripheral blood monocytes into resident macrophages is driven by colony-stimulating factor-1 (CSF-1), which upon interaction with CSF-1 receptor (CSF-1R) induces within minutes the phosphorylation of its cytoplasmic tyrosine residues and the activation of multiple signaling complexes. Caspase-8 and -3 are activated at day 2 to 3 and contribute to macrophage differentiation, for example, through cleavage of nucleophosmin. Here, we show that the phosphatidylinositol-3 kinase and the downstream serine/threonine kinase AKT connect CSF-1R activation to caspase-8 cleavage. Most importantly, we demonstrate that successive waves of AKT activation with increasing amplitude and duration are required to provoke the formation of the caspase-8–activating molecular platform. CSF-1 and its receptor are both required for oscillations in AKT activation to occur, and expression of a constitutively active AKT mutant prevents the macrophage differentiation process. The extracellular receptor kinase 1/2 pathway is activated with a coordinated oscillatory kinetics in a CSF-1R–dependent manner but plays an accessory role in caspase activation and nucleophosmin cleavage. Altogether, CSF-1 stimulation activates a molecular clock that involves phosphatidylinositol-3 kinase and AKT to promote caspase activation. This oscillatory signaling pathway, which is coordinated with extracellular receptor kinase 1/2 oscillatory activation, involves CSF-1 and CSF-1R and controls the terminal differentiation of macrophages.


Sign in / Sign up

Export Citation Format

Share Document