Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle

Nature ◽  
1995 ◽  
Vol 378 (6553) ◽  
pp. 145-149 ◽  
Author(s):  
Stefan Rahmstorf
2021 ◽  
pp. 1-36
Author(s):  
Hyo-Jeong Kim ◽  
Soon-Il An ◽  
Soong-Ki Kim ◽  
Jae-Heung Park

AbstractPaleo proxy records indicate that abrupt changes in thermohaline circulation (THC) were induced by rapid meltwater discharge from retreating ice sheets. Such abrupt changes in the THC have been understood as a hysteresis behavior of nonlinear system. Previous studies, however, primarily focused on a near-static hysteresis under fixed or slowly varying freshwater forcing (FWF), reflecting the equilibrated response of the THC. This study aims to improve the current understanding of transient THC responses under rapidly varying forcing and its dependency on forcing timescales. The results simulated by an Earth system model suggest that the bifurcation is delayed as the forcing timescale is shorter, causing the Atlantic meridional overturning circulation collapse (recovery) to occur at higher (lower) FWF values. The delayed shutdown/recovery occurs because bifurcation is determined not by the FWF value at the time but by the total amount of freshwater remaining over the THC convection region. The remaining freshwater amount is primarily determined by the forcing accumulation (i.e., time-integrated FWF), which is modulated by the freshwater/salt advection by ocean circulations and freshwater flux by the atmospheric hydrological cycle. In general, the latter is overwhelmed by the former. When the forced freshwater amount is the same, the modulation effect is stronger under slowly varying forcing because more time is provided for the feedback processes.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1622 ◽  
Author(s):  
Dariusz Wrzesiński ◽  
Andrzej A. Marsz ◽  
Anna Styszyńska ◽  
Leszek Sobkowiak

The purpose of this study is to find connections between the North Atlantic Thermohaline Circulation (NA THC), climate elements, such as cloud cover, precipitation, air temperature, sunshine duration, and relative humidity, and flow of rivers in Poland. The intensity of NA THC was characterized by the DG3L index, which was established to assess changes in the amount of heat transported by NA THC along with the transport of water to the Arctic. The paper explains and discusses the mechanism of impact of the NA THC changeability on the elements of the catchment water balance variability. The positive and negative phases of the DG3L index are strongly correlated with the heat anomalies in the upper layer of the North Atlantic waters. The obtained results show that changes of NA THC have significant impact on weather conditions and selected climate elements in Poland. Statistically significant positive correlations were found between the DG3L index and average annual air temperatures, particularly in April, July, and August, while negative between the DG3L index and the total cloud cover. Consequently, in the years with the positive values of the DG3L index, there are favorable conditions for the strong increase in evaporation and evapotranspiration from the ground surface. This has impact on flow of rivers in Poland, which shows considerable regional differences.


Sign in / Sign up

Export Citation Format

Share Document