Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation

Nature ◽  
1997 ◽  
Vol 385 (6614) ◽  
pp. 347-350 ◽  
Author(s):  
Leandros Arvanitakis ◽  
Elizabeth Geras-Raaka ◽  
Anjali Varma ◽  
Marvin C. Gershengorn ◽  
Ethel Cesarman
2003 ◽  
Vol 77 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Mark Cannon ◽  
Nicola J. Philpott ◽  
Ethel Cesarman

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV-8]) is a gamma-2-herpesvirus responsible for Kaposi's sarcoma as well as primary effusion lymphoma (PEL). KSHV is a lymphotropic virus that has pirated many mammalian genes involved in inflammation, cell cycle control, and angiogenesis. Among these is the early lytic viral G protein-coupled receptor (vGPCR), a homologue of the human interleukin-8 (IL-8) receptor. When expressed, vGPCR is constitutively active and can signal via mitogen- and stress-activated kinases. In certain models it activates the transcriptional potential of NF-κB and activator protein 1 (AP-1) and induces vascular endothelial growth factor (VEGF) production. Despite its importance to the pathogenesis of all KSHV-mediated disease, little is known about vGPCR activity in hematopoietic cells. To study the signaling potential and downstream effects of vGPCR in such cells, we have developed PEL cell lines that express vGPCR under the control of an inducible promoter. The sequences required for tetracycline-mediated induction were cloned into a plasmid containing adeno-associated virus type 2 elements to enhance integration efficiency. This novel plasmid permitted studies of vGPCR activity in naturally infected KSHV-positive lymphocytes. We show that vGPCR activates ERK-2 and p38 in PEL cells. In addition, it increases the transcription of reporter genes under the control of AP-1, NF-κB, CREB, and NFAT, a Ca2+-dependent transcription factor important to KSHV lytic gene expression. vGPCR also increases the transcription of KSHV open reading frames 50 and 57, thereby displaying broad potential to affect viral transcription patterns. Finally, vGPCR signaling results in increased PEL cell elaboration of KSHV vIL-6 and VEGF, two growth factors involved in KSHV-mediated disease pathogenesis.


2006 ◽  
Vol 189 (2) ◽  
pp. 397-408 ◽  
Author(s):  
P Fu ◽  
P-J Shen ◽  
C-X Zhao ◽  
D J Scott ◽  
C S Samuel ◽  
...  

Leucine-rich repeat-containing G-protein-coupled receptor 8 (LGR8, or RXFP2) is a member of the type C leucine-rich repeat-containing G protein-coupled receptor family, and its endogenous ligand is insulin-like peptide-3 (INSL3). Although LGR8 expression has been demonstrated in various human tissues, including testis, ovary, brain and kidney, the precise roles of this receptor in many of these tissues are unknown. In an effort to better understand INSL3–LGR8 systems in the rat, we cloned the full-length Lgr8 cDNA and investigated the presence and cellular localization of Lgr8 mRNA expression in adult and developing rat kidney. On the basis of these findings, we investigated the presence and distribution of renal 125I-labelled human INSL3-binding sites and the nature of INSL3–LGR8 signalling in cultured renal cells. Thus, using in situ hybridization histochemistry, cells expressing Lgr8 mRNA were observed in glomeruli of renal cortex from adult rats and were tentatively identified as mesangial cells. Quantitative, real-time PCR analysis of the developmental profile of Lgr8 mRNA expression in kidney revealed highest relative levels at late stage gestation (embryonic day 18), with a sharp decrease after birth and lowest levels in the adult. During development, silver grains associated with Lgr8 mRNA hybridization were observed overlying putative mesangial cells in mature glomeruli, with little or no signal associated with less-mature glomeruli. In adult and developing kidney, specific 125I-INSL3-binding sites were associated with glomeruli throughout the renal cortex. In primary cultures of glomerular cells, synthetic human INSL3 specifically and dose-dependently inhibited cell proliferation over a 48 h period, further suggesting the presence of functional LGR8 (receptors) on these cells (mesangial and others). These findings suggest INSL3–LGR8 signalling may be involved in the genesis and/or developmental maturation of renal glomeruli and possibly in regulating mesangial cell density in adult rat kidney.


Endocrinology ◽  
2008 ◽  
Vol 149 (8) ◽  
pp. 4024-4034 ◽  
Author(s):  
Jian Teng ◽  
Zun-Yi Wang ◽  
Eric R. Prossnitz ◽  
Dale E. Bjorling

We have previously shown that estrogen stimulates cell proliferation in both normal and transformed urothelial cells mainly through activation of the two primary estrogen receptors (ERs), ERα and ERβ. A growing body of evidence suggests that estrogen also initiates nongenomic effects that cannot be explained by activation of primary ERs. In the present study, we observed that urothelial cells express high amounts of GPR30, a G protein-coupled receptor recently identified as a candidate for membrane-associated estrogen binding. Membrane- impermeable bovine serum albumin-conjugated 17β-estradiol and the specific GPR30 agonist G-1 both inhibited urothelial cell proliferation in a concentration-dependent manner. Transient overexpression of GPR30 inhibited 17β-estradiol (E2)-induced cell proliferation. Decreased GPR30 expression caused by specific small interfering RNA increased E2-induced cell proliferation. These results indicate that membrane-associated inhibitory effects of E2 on cell proliferation correlate with abundance of GPR30. Although E2 induced a significant increase in caspase-3/7 activity, G-1 did not, suggesting that the GPR30-mediated inhibitory effect on cell proliferation was not caused by apoptosis. Furthermore, we found that G-1 failed to induce c-fos, c-jun, and cyclin D1 expression, and GPR30 overexpression abolished E2-induced c-fos, c-jun, and cyclin D1 expression. However, inactivation of GPR30 by small interfering RNA increased c-fos, c-jun, and cyclin D1 expression. These results suggest that GPR30-mediated inhibition of urothelial cell proliferation is the result of decreased cyclin D1 by down-regulation of activation protein-1 signaling.


2013 ◽  
Vol 23 (1) ◽  
pp. 52-59 ◽  
Author(s):  
Xin Ge ◽  
Ruixia Guo ◽  
Yuhuan Qiao ◽  
Yancai Zhang ◽  
Jia Lei ◽  
...  

ObjectiveThe goal of this study was to investigate the effect of G protein–coupled receptor 30 (GPR30) on the activation of PI3K/Akt pathway induced by E2 in endometrial cancer cells.Methods and materialsImmunohistochemistry was performed to determine the location and expression of GPR30, estrogen receptors (ERs), Akt, and phosphorylated Akt. We also investigated the expression of GPR30, ERs, and the level of phosphorylation of Akt induced by E2 in endometrial cancer cells, Ishikawa cells, and HEC-1A cells. We down-regulated the expression of GPR30 in endometrial cancer cell lines by transfection with shGPR30-pGFP-V-RS, a GPR30 antisense expression vector. The cells were then subjected to a proliferation assay. Immunoprecipitation assay was performed to determine whether GPR30 directly bind to PI3K. The stable transfected cells resuspension of 100 μL (5 × 106 cells) was injected subcutaneously into the right flank of athymic mice to perform xenograft tumor formation assays.ResultsE2 stimulated cell proliferation and induced GPR30 expression and PI3K/Akt pathway activation in endometrial cancer cells, Ishikawa cells, and HEC-1A cells, whereas the expression of ERs remained unchangeable. Down-regulation of GPR30 decreased the phosphorylation of Akt and reduced cell proliferation, and GPR30 did not bind to PI3K. Down-regulation of GPR30 significantly inhibited the tumor growth of HEC-1A cells in athymic nude mice.ConclusionsThese findings suggest that GPR30 mediates the nontranscriptional effect of estrogen on the activation of PI3K/Akt pathway in endometrial cancer cells.


2004 ◽  
Vol 78 (5) ◽  
pp. 2460-2471 ◽  
Author(s):  
Chaoqi Liu ◽  
Gordon Sandford ◽  
Guo Fei ◽  
John Nicholas

ABSTRACT The viral G-protein coupled receptor (vGPCR) specified by human herpesvirus 8 (HHV-8) open reading frame 74 (ORF74) is a ligand-independent chemokine receptor that has structural and functional homologues among other characterized gammaherpesviruses and related receptors in the betaherpesviruses. Sequence comparisons of the gammaherpesvirus vGPCRs revealed a highly conserved region in the C tail, just distal to the seventh transmembrane domain. Mutagenesis of the corresponding codons of HHV-8 ORF74 was carried out to provide C-tail-altered proteins for functional analyses. By measuring receptor-activated vascular endothelial growth factor promoter induction and NF-κB, mitogen-activated protein kinase, and Ca2+ signaling, we found that while some altered receptors showed general signaling deficiencies, others had distinguishable activation profiles, suggestive of selective Gα protein coupling. This was supported by the finding that vGPCR and representative functionally altered variants, vGPCR.8 (R322W) and vGPCR.15 (M325S), were affected differently by inhibitors of Gαi (pertussis toxin), protein kinase C (GF109203X), and phosphatidylinositol 3-kinase (wortmannin). Consistent with the signaling data, [35S]GTPγS incorporation assays revealed preferential coupling of vGPCR.15 to Gαq and an inability of vGPCR.8 to couple functionally to Gαq. However, both variants, wild-type vGPCR, and a C-tail deletion version of the receptor were equally able to associate physically with Gαq. Combined, our data demonstrate that HHV-8 vGPCR contains discrete sites of Gα interaction and that receptor residues in the proximal region of the cytoplasmic tail are determinants of Gα protein coupling specificity.


Sign in / Sign up

Export Citation Format

Share Document