scholarly journals Chronic intermittent hypoxia-induced deficits in synaptic plasticity and neurocognitive functions: a role for brain-derived neurotrophic factor

2012 ◽  
Vol 33 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Hui Xie ◽  
Wing-ho Yung
2016 ◽  
Vol 131 (2) ◽  
pp. 123-138 ◽  
Author(s):  
Veronica Begni ◽  
Marco Andrea Riva ◽  
Annamaria Cattaneo

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a key role in the central nervous system, promoting synaptic plasticity, neurogenesis and neuroprotection. The BDNF gene structure is very complex and consists of multiple 5′-non-coding exons, which give rise to differently spliced transcripts, and one coding exon at the 3′-end. These multiple transcripts, together with the complex transcriptional regulatory machinery, lead to a complex and fine regulation of BDNF expression that can be tissue and stimulus specific. BDNF effects are mainly mediated by the high-affinity, tropomyosin-related, kinase B receptor and involve the activation of several downstream cascades, including the mitogen-activated protein kinase, phospholipase C-γ and phosphoinositide-3-kinase pathways. BDNF exerts a wide range of effects on neuronal function, including the modulation of activity-dependent synaptic plasticity and neurogenesis. Importantly, alterations in BDNF expression and function are involved in different brain disorders and represent a major downstream mechanism for stress response, which has important implications in psychiatric diseases, such as major depressive disorders and schizophrenia. In the present review, we have summarized the main features of BDNF in relation to neuronal plasticity, stress response and pathological conditions, and discussed the role of BDNF as a possible target for pharmacological and non-pharmacological treatments in the context of psychiatric illnesses.


2003 ◽  
Vol 23 (34) ◽  
pp. 10800-10808 ◽  
Author(s):  
Janet Alder ◽  
Smita Thakker-Varia ◽  
Debra A. Bangasser ◽  
May Kuroiwa ◽  
Mark R. Plummer ◽  
...  

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Shaun Cade ◽  
Xin-Fu Zhou ◽  
Larisa Bobrovskaya

Abstract Alzheimer’s disease is a neurodegenerative condition that is potentially mediated by synaptic dysfunction before the onset of cognitive impairments. The disease mostly affects elderly people and there is currently no therapeutic which halts its progression. One therapeutic strategy for Alzheimer’s disease is to regenerate lost synapses by targeting mechanisms involved in synaptic plasticity. This strategy has led to promising drug candidates in clinical trials, but further progress needs to be made. An unresolved problem of Alzheimer’s disease is to identify the molecular mechanisms that render the aged brain susceptible to synaptic dysfunction. Understanding this susceptibility may identify drug targets which could halt, or even reverse, the disease’s progression. Brain derived neurotrophic factor is a neurotrophin expressed in the brain previously implicated in Alzheimer’s disease due to its involvement in synaptic plasticity. Low levels of the protein increase susceptibility to the disease and post-mortem studies consistently show reductions in its expression. A desirable therapeutic approach for Alzheimer’s disease is to stimulate the expression of brain derived neurotrophic factor and potentially regenerate lost synapses. However, synthesis and secretion of the protein are regulated by complex activity-dependent mechanisms within neurons, which makes this approach challenging. Moreover, the protein is synthesised as a precursor which exerts the opposite effect of its mature form through the neurotrophin receptor p75NTR. This review will evaluate current evidence on how age-related alterations in the synthesis, processing and signalling of brain derived neurotrophic factor may increase the risk of Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document