Is P-glycoprotein Involved in Amyloid-β Elimination Across the Blood–Brain Barrier in Alzheimer’s Disease?

2010 ◽  
Vol 88 (4) ◽  
pp. 443-445 ◽  
Author(s):  
S Ohtsuki ◽  
S Ito ◽  
T Terasaki
2021 ◽  
Vol 15 ◽  
Author(s):  
Dong Wang ◽  
Fanglian Chen ◽  
Zhaoli Han ◽  
Zhenyu Yin ◽  
Xintong Ge ◽  
...  

Amyloid-β (Aβ) is the predominant pathologic protein in Alzheimer’s disease (AD). The production and deposition of Aβ are important factors affecting AD progression and prognosis. The deposition of neurotoxic Aβ contributes to damage of the blood–brain barrier. However, the BBB is also crucial in maintaining the normal metabolism of Aβ, and dysfunction of the BBB aggravates Aβ deposition. This review characterizes Aβ deposition and BBB damage in AD, summarizes their interactions, and details their respective mechanisms.


2012 ◽  
Vol 32 (8) ◽  
pp. 1468-1471 ◽  
Author(s):  
Daniëlle ME van Assema ◽  
Jeroen DC Goos ◽  
Wiesje M van der Flier ◽  
Mark Lubberink ◽  
Ronald Boellaard ◽  
...  

Decreased blood–brain barrier P-glycoprotein (Pgp) function has been shown in Alzheimer's disease (AD) patients using positron emission tomography (PET) with the radiotracer ( R)-[11C]verapamil. Decreased Pgp function has also been hypothesized to promote cerebral amyloid angiopathy (CAA) development. Here, we used PET and ( R)-[11C]verapamil to assess Pgp function in eighteen AD patients, of which six had microbleeds (MBs), presumably reflecting underlying CAA. No differences were found in binding potential and nonspecific volume of distribution of ( R)-[11C]verapamil between patient groups. These results provide no evidence for additional Pgp dysfunction in AD patients with MBs.


Brain ◽  
2011 ◽  
Vol 135 (1) ◽  
pp. 181-189 ◽  
Author(s):  
Daniëlle M. E. van Assema ◽  
Mark Lubberink ◽  
Martin Bauer ◽  
Wiesje M. van der Flier ◽  
Robert C. Schuit ◽  
...  

2017 ◽  
Vol 214 (11) ◽  
pp. 3151-3169 ◽  
Author(s):  
Axel Montagne ◽  
Zhen Zhao ◽  
Berislav V. Zlokovic

The blood–brain barrier (BBB) keeps neurotoxic plasma-derived components, cells, and pathogens out of the brain. An early BBB breakdown and/or dysfunction have been shown in Alzheimer’s disease (AD) before dementia, neurodegeneration and/or brain atrophy occur. However, the role of BBB breakdown in neurodegenerative disorders is still not fully understood. Here, we examine BBB breakdown in animal models frequently used to study the pathophysiology of AD, including transgenic mice expressing human amyloid-β precursor protein, presenilin 1, and tau mutations, and apolipoprotein E, the strongest genetic risk factor for AD. We discuss the role of BBB breakdown and dysfunction in neurodegenerative process, pitfalls in BBB measurements, and how targeting the BBB can influence the course of neurological disorder. Finally, we comment on future approaches and models to better define, at the cellular and molecular level, the underlying mechanisms between BBB breakdown and neurodegeneration as a basis for developing new therapies for BBB repair to control neurodegeneration.


2020 ◽  
Vol 6 (41) ◽  
pp. eabc7031 ◽  
Author(s):  
Yutong Zhou ◽  
Feiyan Zhu ◽  
Yang Liu ◽  
Meng Zheng ◽  
Yibin Wang ◽  
...  

Toxic aggregated amyloid-β accumulation is a key pathogenic event in Alzheimer’s disease (AD), which derives from amyloid precursor protein (APP) through sequential cleavage by BACE1 (β-site APP cleavage enzyme 1) and γ-secretase. Small interfering RNAs (siRNAs) show great promise for AD therapy by specific silencing of BACE1. However, lack of effective siRNA brain delivery approaches limits this strategy. Here, we developed a glycosylated “triple-interaction” stabilized polymeric siRNA nanomedicine (Gal-NP@siRNA) to target BACE1 in APP/PS1 transgenic AD mouse model. Gal-NP@siRNA exhibits superior blood stability and can efficiently penetrate the blood-brain barrier (BBB) via glycemia-controlled glucose transporter-1 (Glut1)–mediated transport, thereby ensuring that siRNAs decrease BACE1 expression and modify relative pathways. Noticeably, Gal-NP@siBACE1 administration restored the deterioration of cognitive capacity in AD mice without notable side effects. This “Trojan horse” strategy supports the utility of RNA interference therapy in neurodegenerative diseases.


2002 ◽  
Vol 38 (6) ◽  
pp. 303-313 ◽  
Author(s):  
Jasmina B Mackic ◽  
James Bading ◽  
Jorge Ghiso ◽  
Larry Walker ◽  
Thomas Wisniewski ◽  
...  

2021 ◽  
Author(s):  
Ramon Vilar ◽  
Tiffany G Chan ◽  
Carmen Ruehl ◽  
Sophie Morse ◽  
Michelle Simon ◽  
...  

One of the key hallmarks of Alzheimer’s disease is the aggregation of the amyloid-β peptide to form fibrils. Consequently, there has been great interest in studying molecules that can disrupt...


Sign in / Sign up

Export Citation Format

Share Document