scholarly journals Relationship Between Amyloid-β Deposition and Blood–Brain Barrier Dysfunction in Alzheimer’s Disease

2021 ◽  
Vol 15 ◽  
Author(s):  
Dong Wang ◽  
Fanglian Chen ◽  
Zhaoli Han ◽  
Zhenyu Yin ◽  
Xintong Ge ◽  
...  

Amyloid-β (Aβ) is the predominant pathologic protein in Alzheimer’s disease (AD). The production and deposition of Aβ are important factors affecting AD progression and prognosis. The deposition of neurotoxic Aβ contributes to damage of the blood–brain barrier. However, the BBB is also crucial in maintaining the normal metabolism of Aβ, and dysfunction of the BBB aggravates Aβ deposition. This review characterizes Aβ deposition and BBB damage in AD, summarizes their interactions, and details their respective mechanisms.

2017 ◽  
Vol 214 (11) ◽  
pp. 3151-3169 ◽  
Author(s):  
Axel Montagne ◽  
Zhen Zhao ◽  
Berislav V. Zlokovic

The blood–brain barrier (BBB) keeps neurotoxic plasma-derived components, cells, and pathogens out of the brain. An early BBB breakdown and/or dysfunction have been shown in Alzheimer’s disease (AD) before dementia, neurodegeneration and/or brain atrophy occur. However, the role of BBB breakdown in neurodegenerative disorders is still not fully understood. Here, we examine BBB breakdown in animal models frequently used to study the pathophysiology of AD, including transgenic mice expressing human amyloid-β precursor protein, presenilin 1, and tau mutations, and apolipoprotein E, the strongest genetic risk factor for AD. We discuss the role of BBB breakdown and dysfunction in neurodegenerative process, pitfalls in BBB measurements, and how targeting the BBB can influence the course of neurological disorder. Finally, we comment on future approaches and models to better define, at the cellular and molecular level, the underlying mechanisms between BBB breakdown and neurodegeneration as a basis for developing new therapies for BBB repair to control neurodegeneration.


2013 ◽  
Vol 33 (10) ◽  
pp. 1500-1513 ◽  
Author(s):  
Michelle A Erickson ◽  
William A Banks

The blood–brain barrier (BBB) plays critical roles in the maintenance of central nervous system (CNS) homeostasis. Dysfunction of the BBB occurs in a number of CNS diseases, including Alzheimer's disease (AD). A prevailing hypothesis in the AD field is the amyloid cascade hypothesis that states that amyloid-β (Aβ) deposition in the CNS initiates a cascade of molecular events that cause neurodegeneration, leading to AD onset and progression. In this review, the participation of the BBB in the amyloid cascade and in other mechanisms of AD neurodegeneration will be discussed. We will specifically focus on three aspects of BBB dysfunction: disruption, perturbation of transporters, and secretion of neurotoxic substances by the BBB. We will also discuss the interaction of the BBB with components of the neurovascular unit in relation to AD and the potential contribution of AD risk factors to aspects of BBB dysfunction. From the results discussed herein, we conclude that BBB dysfunction contributes to AD through a number of mechanisms that could be initiated in the presence or absence of Aβ pathology.


2019 ◽  
Vol 11 (521) ◽  
pp. eaaw8954 ◽  
Author(s):  
Dan Z. Milikovsky ◽  
Jonathan Ofer ◽  
Vladimir V. Senatorov ◽  
Aaron R. Friedman ◽  
Ofer Prager ◽  
...  

A growing body of evidence shows that epileptic activity is frequent but often undiagnosed in patients with Alzheimer’s disease (AD) and has major therapeutic implications. Here, we analyzed electroencephalogram (EEG) data from patients with AD and found an EEG signature of transient slowing of the cortical network that we termed paroxysmal slow wave events (PSWEs). The occurrence per minute of the PSWEs was correlated with level of cognitive impairment. Interictal (between seizures) PSWEs were also found in patients with epilepsy, localized to cortical regions displaying blood-brain barrier (BBB) dysfunction, and in three rodent models with BBB pathology: aged mice, young 5x familial AD model, and status epilepticus–induced epilepsy in young rats. To investigate the potential causative role of BBB dysfunction in network modifications underlying PSWEs, we infused the serum protein albumin directly into the cerebral ventricles of naïve young rats. Infusion of albumin, but not artificial cerebrospinal fluid control, resulted in high incidence of PSWEs. Our results identify PSWEs as an EEG manifestation of nonconvulsive seizures in patients with AD and suggest BBB pathology as an underlying mechanism and as a promising therapeutic target.


2020 ◽  
Vol 6 (41) ◽  
pp. eabc7031 ◽  
Author(s):  
Yutong Zhou ◽  
Feiyan Zhu ◽  
Yang Liu ◽  
Meng Zheng ◽  
Yibin Wang ◽  
...  

Toxic aggregated amyloid-β accumulation is a key pathogenic event in Alzheimer’s disease (AD), which derives from amyloid precursor protein (APP) through sequential cleavage by BACE1 (β-site APP cleavage enzyme 1) and γ-secretase. Small interfering RNAs (siRNAs) show great promise for AD therapy by specific silencing of BACE1. However, lack of effective siRNA brain delivery approaches limits this strategy. Here, we developed a glycosylated “triple-interaction” stabilized polymeric siRNA nanomedicine (Gal-NP@siRNA) to target BACE1 in APP/PS1 transgenic AD mouse model. Gal-NP@siRNA exhibits superior blood stability and can efficiently penetrate the blood-brain barrier (BBB) via glycemia-controlled glucose transporter-1 (Glut1)–mediated transport, thereby ensuring that siRNAs decrease BACE1 expression and modify relative pathways. Noticeably, Gal-NP@siBACE1 administration restored the deterioration of cognitive capacity in AD mice without notable side effects. This “Trojan horse” strategy supports the utility of RNA interference therapy in neurodegenerative diseases.


2002 ◽  
Vol 38 (6) ◽  
pp. 303-313 ◽  
Author(s):  
Jasmina B Mackic ◽  
James Bading ◽  
Jorge Ghiso ◽  
Larry Walker ◽  
Thomas Wisniewski ◽  
...  

2021 ◽  
Author(s):  
Ramon Vilar ◽  
Tiffany G Chan ◽  
Carmen Ruehl ◽  
Sophie Morse ◽  
Michelle Simon ◽  
...  

One of the key hallmarks of Alzheimer’s disease is the aggregation of the amyloid-β peptide to form fibrils. Consequently, there has been great interest in studying molecules that can disrupt...


Sign in / Sign up

Export Citation Format

Share Document