scholarly journals Gfi1.1 regulates hematopoietic lineage differentiation during zebrafish embryogenesis

Cell Research ◽  
2008 ◽  
Vol 18 (6) ◽  
pp. 677-685 ◽  
Author(s):  
Wei Wei ◽  
Lu Wen ◽  
Peng Huang ◽  
Zheng Zhang ◽  
Yuanyuan Chen ◽  
...  
Blood ◽  
2011 ◽  
Vol 117 (17) ◽  
pp. 4449-4459 ◽  
Author(s):  
Inge Van de Walle ◽  
Greet De Smet ◽  
Martina Gärtner ◽  
Magda De Smedt ◽  
Els Waegemans ◽  
...  

Abstract Notch signaling critically mediates various hematopoietic lineage decisions and is induced in mammals by Notch ligands that are classified into 2 families, Delta-like (Delta-like-1, -3 and -4) and Jagged (Jagged1 and Jagged2), based on structural homology with both Drosophila ligands Delta and Serrate, respectively. Because the functional differences between mammalian Notch ligands were still unclear, we have investigated their influence on early human hematopoiesis and show that Jagged2 affects hematopoietic lineage decisions very similarly as Delta-like-1 and -4, but very different from Jagged1. OP9 coculture experiments revealed that Jagged2, like Delta-like ligands, induces T-lineage differentiation and inhibits B-cell and myeloid development. However, dose-dependent Notch activation studies, gene expression analysis, and promoter activation assays indicated that Jagged2 is a weaker Notch1-activator compared with the Delta-like ligands, revealing a Notch1 specific signal strength hierarchy for mammalian Notch ligands. Strikingly, Lunatic-Fringe– mediated glycosylation of Notch1 potentiated Notch signaling through Delta-like ligands and also Jagged2, in contrast to Jagged1. Thus, our results reveal a unique role for Jagged1 in preventing the induction of T-lineage differentiation in hematopoietic stem cells and show an unexpected functional similarity between Jagged2 and the Delta-like ligands.


2019 ◽  
Author(s):  
Emanuele Gioacchino ◽  
Cansu Koyunlar ◽  
Hans de Looper ◽  
Madelon de Jong ◽  
Tomasz Dobrzycki ◽  
...  

AbstractHematopoietic stem cells (HSCs) are tightly controlled to keep a balance between myeloid and lymphoid cell differentiation. Gata2 is a pivotal hematopoietic transcription factor required for HSC generation and maintenance. We generated a zebrafish mutant for the mammalianGata2orthologue,gata2b. We found that in adult zebrafish,gata2bis required for both neutrophilic- and monocytic lineage differentiation. Single cell transcriptome analysis revealed that the myeloid defect present in Gata2b deficient zebrafish arise in the most immature hematopoietic stem and progenitor cell (HSPC) compartment and that this population is instead committed towards the lymphoid and erythroid lineage. Taken together, we find that Gata2b is vital for the fate choice between the myeloid and lymphoid lineages.


PLoS Biology ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. e3001394
Author(s):  
Jueqiong Wang ◽  
Carlos Farkas ◽  
Aissa Benyoucef ◽  
Catherine Carmichael ◽  
Katharina Haigh ◽  
...  

The ZEB2 transcription factor has been demonstrated to play important roles in hematopoiesis and leukemic transformation. ZEB1 is a close family member of ZEB2 but has remained more enigmatic concerning its roles in hematopoiesis. Here, we show using conditional loss-of-function approaches and bone marrow (BM) reconstitution experiments that ZEB1 plays a cell-autonomous role in hematopoietic lineage differentiation, particularly as a positive regulator of monocyte development in addition to its previously reported important role in T-cell differentiation. Analysis of existing single-cell (sc) RNA sequencing (RNA-seq) data of early hematopoiesis has revealed distinctive expression differences between Zeb1 and Zeb2 in hematopoietic stem and progenitor cell (HSPC) differentiation, with Zeb2 being more highly and broadly expressed than Zeb1 except at a key transition point (short-term HSC [ST-HSC]➔MPP1), whereby Zeb1 appears to be the dominantly expressed family member. Inducible genetic inactivation of both Zeb1 and Zeb2 using a tamoxifen-inducible Cre-mediated approach leads to acute BM failure at this transition point with increased long-term and short-term hematopoietic stem cell numbers and an accompanying decrease in all hematopoietic lineage differentiation. Bioinformatics analysis of RNA-seq data has revealed that ZEB2 acts predominantly as a transcriptional repressor involved in restraining mature hematopoietic lineage gene expression programs from being expressed too early in HSPCs. ZEB1 appears to fine-tune this repressive role during hematopoiesis to ensure hematopoietic lineage fidelity. Analysis of Rosa26 locus–based transgenic models has revealed that Zeb1 as well as Zeb2 cDNA-based overexpression within the hematopoietic system can drive extramedullary hematopoiesis/splenomegaly and enhance monocyte development. Finally, inactivation of Zeb2 alone or Zeb1/2 together was found to enhance survival in secondary MLL-AF9 acute myeloid leukemia (AML) models attesting to the oncogenic role of ZEB1/2 in AML.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4319-4319
Author(s):  
Tomohiko Ishibashi ◽  
Takafumi Yokota ◽  
Yusuke Satoh ◽  
Takao Sudo ◽  
Yukiko Doi ◽  
...  

Abstract Understanding lineage specific markers contributes to investigation into lineage commitment processes in hematopoiesis. Particularly in the human study, information about hematopoietic lineage divergence is essential to refine hematopoietic lineage tree. Lineage markers are also potentially useful for therapeutic target, such as CD20 in B-cell lymphoma, and CD33 in acute myeloid leukemia. We have recently reported that special AT-rich sequence-binding protein 1 (SATB1), a global chromatin organizer, promotes lymphocyte production from hematopoietic stem cells (HSCs) (Immunity 38;1105, 2013). Expression level of SATB1 increases with early lymphoid differentiation, whereas it is shut off in committed myeloid progenitors. To search a novel cell surface molecule that marks the point of branching lineage along early myeloid and lymphoid differentiation, we performed microarray analyses comparing SATB1-overexpressed HSCs with mock-transduced HSCs. The results drew our attention to membrane-spanning 4-domains, subfamily A, member 3 (MS4A3). MS4A3, also called hematopoietic cell-specific transmembrane 4 (HTm4), is a member of the MS4A family. CD20, encoded by MS4A1 gene, belongs to the same family. We observed that expression level of MS4A3 in SATB1-overexpressed HSCs was decreased almost one tenth of that of mock HSCs. To confirm the relationship of SATB1 and MS4A3 in human hematopoietic cells, we first used chronic myeloid leukemia cell line K562, which was found to clearly express MS4A3 on their cell surface. While SATB1 expression was undetectable in original K562 cells, the exogenous expression of SATB1 significantly reduced their MS4A3 expression level, suggesting that SATB1 negatively regulates MS4A3 expression in human cells. Next, we analyzed MS4A3 expression pattern in primary human hematopoietic stem/progenitor cells. Bone marrow (BM) cells were obtained from healthy donors or patients with acute myeloid leukemia. The Institutional Review Board of Osaka University School of Medicine approved all of protocols, and written informed consents were obtained from all participants. Mononuclear cells were separated from the BM samples by density gradient centrifugation, and subsequently applied to cell sorting for Lineage marker-negative (Lin-) CD34+ CD38- HSCs, Lin- CD34+ CD38+ IL-3 receptor α (IL-3Rα)+ CD45RA- common myeloid progenitors (CMPs), Lin- CD34+ CD38+ IL3-Rα+ CD45RA+ granulocyte-macrophage progenitors (GMPs) and Lin- CD34+ CD38+ IL-3Rα- CD45RA-megakaryocyte-erythroid progenitors (MEPs). MS4A3 expression levels of the sorted cells were analyzed with real-time RT-PCR. We detected more than 10-fold amount of MS4A3 transcripts in CMPs than HSCs. Furthermore, its expression level continuously increased along myeloid lineage differentiation to GMP. On the other hand, megakaryocyte-erythroid lineage differentiation was not accompanied by MS4A3 expression and the amount of MS4A3 transcripts in MEPs was minimum as in HSCs. Flow cytometry analyses confirmed that HSCs and MEPs do not express MS4A3 on their cell surface whereas the MS4A3 expression on CMPs and GMPs is detectable. Further, the Lin- CD34+ CD38+ CD33+ cells could be fractionated according to the intensity of cell surface MS4A3 expression. To investigate the significance of cell surface MS4A3 expression for functional analyses of myeloid progenitor cells, we performed methylcellulose colony-forming assays. We found that MS4A3+ cells in Lin- CD34+ CD38+ CD33+ fraction only produced granulocyte/macrophage colonies, losing erythroid colony- and mixed colony-forming capacity. These results suggest that cell surface expression of MS4A3 is useful to distinguish granulocyte/macrophage lineage-committed progenitors from other lineage-related ones in early human hematopoiesis. We also analyzed MS4A3 expression in BM cells obtained from patients with acute leukemia. Flow cytometry analyses revealed that leukemia cells of some patients expressed substantial amount of cell surface MS4A3. In conclusion, MS4A3 is useful to monitor early stage of myeloid differentiation in human hematopoiesis. In addition, our findings of MS4A3 expression on myeloid leukemia cells, while no expression on normal HSCs, imply that MS4A3 might be a therapeutic target molecule in myelogenous leukemia. Further studies would clarify the application of MS4A3 to anti-leukemia therapy. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document