scholarly journals Proteomic characterization of a temperature-sensitive conditional lethal in Drosophila melanogaster

Heredity ◽  
2009 ◽  
Vol 104 (2) ◽  
pp. 125-134 ◽  
Author(s):  
K S Pedersen ◽  
M C Codrea ◽  
C J Vermeulen ◽  
V Loeschcke ◽  
E Bendixen
Genetics ◽  
1977 ◽  
Vol 87 (1) ◽  
pp. 95-104
Author(s):  
Theodore Homyk ◽  
David E Sheppard

ABSTRACT A flight test box was developed and used in the isolation and initial characterization of Drosophila melanogaster mutants defective in flight behavior. Forty-eight mutants were isolated from F1 progeny of ethyl methanesulfonate-treated males. Genetic mapping and complementation tests show that the mutations reside at thirty-four different sites on the X chromosome. Different mutants show different degrees of flight ability compared to controls. Forty-six mutations are recessive, while two appear to be semi-dominant with respect to flight behavior. In addition to flight defects, five mutants have visible defects, five behave as temperature-sensitive lethals and three exhibit abnormal electro-retinograms. Alleles of each of the previously known behavioral mutations, Hyperkinetic, ether à go-go and Shaker were found. Preliminary studies also suggest that the flight behavioral phenotype of mutations at seven sites is affected by the temperature at which the flies develop.


1978 ◽  
Vol 31 (1) ◽  
pp. 73
Author(s):  
CR Datson ◽  
NG Brink

A new X-linked temperature-sensitive female sterile mutant (/(1)1074") is described. The nonpermissive temperature for this mutant is 29�C. There are two temperature-sensitive periods during development-one between the 6th and 12th hours of embryogenesis and a second commencing during the first larval instar and terminating at mid pupation. Embryological abnormalities first become apparent during gastrulation and eventually these result in the breakdown of organogenesis and the complete absence of normal muscular contractions. Preconditioning mutant females at the nonpermissive temperature for up to 48 h enhances the abnormal embryological effects produced by the mutant.


Genetics ◽  
1973 ◽  
Vol 75 (2) ◽  
pp. 299-321
Author(s):  
T C Kaufman ◽  
S E Tasaka ◽  
D T Suzuki

ABSTRACT It has been found that certain alleles of the zeste locus (za 1-1.0) have no phenotype of their own, but interact with certain alleles at the bithorax locus (bx 3-58.8). This interaction takes the form of an enhancement of the homeotic bx phenotype to a more extreme form—i.e., the metathorax is transformed into mesothorax in varying degrees depending on the bx allele used. This enhancement is somewhat reminiscent of the transvection effect described by Lewis (1954). The characterization of the interaction thus far has shown that the enhancement only effects bx alleles which arise spontaneously, whereas the origin of the za allele is unimportant. The gene claret nondisjunctional was used for the production of gynandromorphs which showed that the enhancing ability of za, like the eye pigment change caused by z, is autonomous. The enhancement of one specific allele (bx34e), which is temperature-sensitive, has allowed a delineation of the temperature-sensitive period of the bithorax locus to a period extending from the middle of the second larval instar to the middle of the third larval instar. These results, as well as those of other enhancer and suppressor systems in Drosophila, have revealed the possibility of the involvement of heterocyclic compounds in the control of cell determination and fate in Drosophila melanogaster.


Author(s):  
Celia K S Lau ◽  
Meghan Jelen ◽  
Michael D Gordon

Abstract Feeding is an essential part of animal life that is greatly impacted by the sense of taste. Although the characterization of taste-detection at the periphery has been extensive, higher order taste and feeding circuits are still being elucidated. Here, we use an automated closed-loop optogenetic activation screen to detect novel taste and feeding neurons in Drosophila melanogaster. Out of 122 Janelia FlyLight Project GAL4 lines preselected based on expression pattern, we identify six lines that acutely promote feeding and 35 lines that inhibit it. As proof of principle, we follow up on R70C07-GAL4, which labels neurons that strongly inhibit feeding. Using split-GAL4 lines to isolate subsets of the R70C07-GAL4 population, we find both appetitive and aversive neurons. Furthermore, we show that R70C07-GAL4 labels putative second-order taste interneurons that contact both sweet and bitter sensory neurons. These results serve as a resource for further functional dissection of fly feeding circuits.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2543
Author(s):  
Ruidong Ni ◽  
Suzeeta Bhandari ◽  
Perry R. Mitchell ◽  
Gabriela Suarez ◽  
Neel B. Patel ◽  
...  

Fatty acid amides are a diverse family of underappreciated, biologically occurring lipids. Herein, the methods for the chemical synthesis and subsequent characterization of specific members of the fatty acid amide family are described. The synthetically prepared fatty acid amides and those obtained commercially are used as standards for the characterization and quantification of the fatty acid amides produced by biological systems, a fatty acid amidome. The fatty acid amidomes from mouse N18TG2 cells, sheep choroid plexus cells, Drosophila melanogaster, Bombyx mori, Apis mellifera, and Tribolium castaneum are presented.


Sign in / Sign up

Export Citation Format

Share Document