scholarly journals Devil and angel in the renin–angiotensin system: ACE–angiotensin II–AT1 receptor axis vs. ACE2–angiotensin-(1–7)–Mas receptor axis

2009 ◽  
Vol 32 (7) ◽  
pp. 533-536 ◽  
Author(s):  
Masaru Iwai ◽  
Masatsugu Horiuchi
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Marko Poglitsch ◽  
Oliver Domenig ◽  
Cornelia Schwager ◽  
Stefan Stranner ◽  
Bernhard Peball ◽  
...  

Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase of the renin-angiotensin-system (RAS) which is known to cleave several substrates among vasoactive peptides. Its preferred substrate is Angiotensin II, which is tightly involved in the regulation of important physiological functions including fluid homeostasis and blood pressure. Ang 1–7, the main enzymatic product of ACE2, became increasingly important in the literature in recent years, as it was reported to counteract hypertensive and fibrotic actions of Angiotensin II via the MAS receptor. The functional connection of ACE2, Ang 1–7, and the MAS receptor is also referred to as the alternative axis of the RAS. In the present paper, we describe the recombinant expression and purification of human and murine ACE2 (rhACE2 and rmACE2). Furthermore, we determined the conversion rates of rhACE2 and rmACE2 for different natural peptide substrates in plasma samples and discovered species-specific differences in substrate specificities, probably leading to functional differences in the alternative axis of the RAS. In particular, conversion rates of Ang 1–10 to Ang 1–9 were found to be substantially different when applying rhACE2 or rmACE2in vitro. In contrast to rhACE2, rm ACE2 is substantially less potent in transformation of Ang 1–10 to Ang 1–9.


Endocrinology ◽  
2005 ◽  
Vol 146 (1) ◽  
pp. 392-398 ◽  
Author(s):  
Orla A. O’Mahony ◽  
Stewart Barker ◽  
John R. Puddefoot ◽  
Gavin P. Vinson

The renin angiotensin system has been shown to have tissue-related functions that are distinct from its systemic roles. We showed that angiotensin II type 1 (AT1) receptors are present in mammalian sperm, and angiotensin II stimulates sperm motility and capacitation. In addition, angiotensin II is present in human seminal plasma at concentrations higher than found in blood. In testing the possibility that the prostate may be the source of seminal plasma angiotensin II, mRNA coding for angiotensinogen, (pro)renin, and angiotensin-converting enzyme were identified by RT-PCR in rat and human prostate and in prostate LNCaP cells, as well as the angiotensin receptors types 1 and 2 (AT1 and AT2) in human tissues and AT1 in rat. In human tissue, immunocytochemistry showed cellular colocalization of renin with the AT1 receptor in secretory epithelial cells. Confirmation of the capacity of the prostate to secrete angiotensin II was shown by the detection of immunoreactive angiotensin in media removed from rat prostate organ cultures and LNCaP cells. Rat prostate angiotensin secretion was enhanced by dihydrotestosterone, but LNCaP angiotensin was stimulated by estradiol. This stimulation was blocked by tamoxifen. Rat prostate AT1 receptor expression was much greater in prepuberal than in postpuberal rats but was not affected by a low-sodium diet. It was, however, significantly enhanced by captopril pretreatment. These findings all suggest the independence of prostate and systemic renin angiotensin system regulation. The data presented here suggest that the prostate may be a source of the secreted angiotensin II found in seminal plasma.


2011 ◽  
Vol 19 (1) ◽  
pp. R1-R19 ◽  
Author(s):  
Gavin P Vinson ◽  
Stewart Barker ◽  
John R Puddefoot

Much evidence now suggests that angiotensin II has roles in normal functions of the breast that may be altered or attenuated in cancer. Both angiotensin type 1 (AT1) and type 2 (AT2) receptors are present particularly in the secretory epithelium. Additionally, all the elements of a tissue renin–angiotensin system, angiotensinogen, prorenin and angiotensin-converting enzyme (ACE), are also present and distributed in different cell types in a manner suggesting a close relationship with sites of angiotensin II activity. These findings are consistent with the concept that stromal elements and myoepithelium are instrumental in maintaining normal epithelial structure and function. In disease, this system becomes disrupted, particularly in invasive carcinoma. Both AT1 and AT2 receptors are present in tumours and may be up-regulated in some. Experimentally, angiotensin II, acting via the AT1 receptor, increases tumour cell proliferation and angiogenesis, both these are inhibited by blocking its production or function. Epidemiological evidence on the effect of expression levels of ACE or the distribution of ACE or AT1 receptor variants in many types of cancer gives indirect support to these concepts. It is possible that there is a case for the therapeutic use of high doses of ACE inhibitors and AT1 receptor blockers in breast cancer, as there may be for AT2 receptor agonists, though this awaits full investigation. Attention is drawn to the possibility of blocking specific AT1-mediated intracellular signalling pathways, for example by AT1-directed antibodies, which exploit the possibility that the extracellular N-terminus of the AT1 receptor may have previously unsuspected signalling roles.


Author(s):  
Albena Nunes-Silva ◽  
Guilherme Carvalho Rocha ◽  
Daniel Massote Magalhaes ◽  
Lucas Neves Vaz ◽  
Marcelo Henrique Salviano de Faria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document