scholarly journals Measurement of Cerebral Blood Flow Using Bolus Inhalation of C15O2 and Positron Emission Tomography: Description of the Method and its Comparison with the C15O2 Continuous Inhalation Method

1984 ◽  
Vol 4 (2) ◽  
pp. 224-234 ◽  
Author(s):  
Iwao Kanno ◽  
Adriaan A. Lammertsma ◽  
Jon D. Heather ◽  
Jeremy M. Gibbs ◽  
Christopher G. Rhodes ◽  
...  

This article describes a rapid method for the regional measurement of cerebral blood flow using a single breath of C15O2 and positron emission tomography. The technique is based on the bolus distribution principle and utilises a reference table for the calculation of flow. Seven subjects were studied using both this method and the C15O2 continuous inhalation steady-state technique. The single-breath method gave flow values 20% higher than those obtained using the steady-state method. A simulation study was performed in an attempt to define the reasons for the difference between the two techniques. Estimations were made of identified sources of error in the measurement of regional cerebral blood flow using the single-breath technique and compared with results from a similar study previously described for the steady-state technique. However, further comparative studies will be necessary to satisfactorily explain the difference between both techniques.

1988 ◽  
Vol 8 (1_suppl) ◽  
pp. S52-S60 ◽  
Author(s):  
Atsushi Inugami ◽  
Iwao Kanno ◽  
Kazuo Uemura ◽  
Fumio Shishido ◽  
Matsutaro Murakami ◽  
...  

The radioisotope distribution following intravenous injection of 99mTc-labeled hexamethylpropyleneamine oxime (HM-PAO) in the brain was measured by single photon emission computed tomography (SPECT) and corrected for the nonlinearity caused by differences in net extraction. The “linearization” correction was based on a three compartment model, and it required a region of reference to normalize the SPECT image in terms of regional cerebral blood flow distribution. Two different regions of reference, the cerebellum and the whole brain, were tested. The uncorrected and corrected HM-PAO images were compared with cerebral blood flow (CBF) image measured by the C15O2 inhalation steady state method and positron emission tomography (PET). The relationship between uncorrected HM-PAO and PET–CBF showed a correlation coefficient of 0.85 but tended to saturate at high CBF values, whereas it was improved to 0.93 after the “linearization” correction. The whole-brain normalization worked just as well as normalization using the cerebellum. This study constitutes a validation of the “linearization” correction and it suggests that after linearization the HM-PAO image may be scaled to absolute CBF by employing a global hemispheric CBF value as measured by the nontomographic 133Xe clearance method.


2001 ◽  
Vol 21 (12) ◽  
pp. 1472-1479 ◽  
Author(s):  
Hidehiko Okazawa ◽  
Hiroshi Yamauchi ◽  
Kanji Sugimoto ◽  
Hiroshi Toyoda ◽  
Yoshihiko Kishibe ◽  
...  

To evaluate changes in cerebral hemodynamics and metabolism induced by acetazolamide in healthy subjects, positron emission tomography studies for measurement of cerebral perfusion and oxygen consumption were performed. Sixteen healthy volunteers underwent positron emission tomography studies with15O-gas and water before and after intravenous administration of acetazolamide. Dynamic positron emission tomography data were acquired after bolus injection of H215O and bolus inhalation of15O2. Cerebral blood flow, metabolic rate of oxygen, and arterial-to-capillary blood volume images were calculated using the three-weighted integral method. The images of cerebral blood volume were calculated using the bolus inhalation technique of C15O. The scans for cerebral blood flow and volume and metabolic rate of oxygen after acetazolamide challenge were performed at 10, 20, and 30 minutes after drug injection. The parametric images obtained under the two conditions at baseline and after acetazolamide administration were compared. The global and regional values for cerebral blood flow and volume and arterial-to-capillary blood volume increased significantly after acetazolamide administration compared with the baseline condition, whereas no difference in metabolic rate of oxygen was observed. Acetazolamide-induced increases in both blood flow and volume in the normal brain occurred as a vasodilatory reaction of functioning vessels. The increase in arterial-to-capillary blood volume made the major contribution to the cerebral blood volume increase, indicating that the raise in cerebral blood flow during the acetazolamide challenge is closely related to arterial-to-capillary vasomotor responsiveness.


2003 ◽  
Vol 98 (5) ◽  
pp. 1101-1111 ◽  
Author(s):  
Kenichi Ogawa ◽  
Takeshi Uema ◽  
Nobutaka Motohashi ◽  
Masami Nishikawa ◽  
Harumasa Takano ◽  
...  

Background The precise neural mechanisms of propofol anesthesia in humans are still unknown. The authors examined the acute effects of propofol on regional cerebral blood flow (rCBF) using positron emission tomography in patients with severe depression. Methods In six severely depressed patients (mean age, 55.0 yr) scheduled for electroconvulsive therapy, anesthetic levels were monitored by electroencephalography, and rCBF was serially quantified in the awake, sedated, and anesthetized states. The authors used high-resolution positron emission tomography with 15O-labeled water and statistical parametric mapping 99 for imaging and analysis of the data. Results Global cerebral blood flow showed sharp decreases from the awake level during the administration of propofol, decreasing 26.8% in the sedated state and 54.4% in the anesthetized state. Moreover, a dose effect was seen in both parietal cortices and the left lateral prefrontal region with larger regions of relative decrease in rCBF at higher propofol doses. At the higher dose, the values of rCBF in the pulvinar nucleus of the thalamus, the pontine tegmentum, and the cerebellar cortex were also affected. Meanwhile, there were few changes of relative rCBF in the basal frontal lobes during both sedated and anesthetized states. Conclusions As in earlier studies using normal subjects, pronounced suppression in rCBF in the brain stem reticular formation, the thalamus, and the parietal association cortex occurred even in severely depressed patients. However, previously reported decreases in rCBF in the basal frontal lobe were absent in depressed patients.


2000 ◽  
Vol 92 (6) ◽  
pp. 1009-1015 ◽  
Author(s):  
Seiji Yamamoto ◽  
Weiyu Teng ◽  
Shigeru Nishizawa ◽  
Takeharu Kakiuchi ◽  
Hideo Tsukada

Object. The hydroxyl radical scavenger (±)-N,N′-propylenedinicotinamide (AVS) has been shown to ameliorate the occurrence of vasospasm following experimental subarachnoid hemorrhage (SAH) and to reduce the incidence of delayed ischemic neurological deficits (DINDs) in patients with SAH. The authors investigated whether prophylactic administration of AVS could improve cerebral blood flow (CBF) and cerebral glucose utilization (CGU) following SAH in rats.Methods. Anesthetized rats were subjected to intracisternal injection of blood (SAH group) or saline (control group). Either AVS (1 mg/kg/min) or saline (vehicle group) was continuously injected into the rat femoral vein. Forty-eight hours later, positron emission tomography scanning was used with the tracers 15O-H2O and 18F-2-fluoro-d-glucose to analyze quantitatively CBF and CGU, respectively, in the frontoparietal and occipital regions (12 regions of interest/group).In SAH rats receiving only vehicle, CBF decreased significantly (p < 0.05, Tukey's test) and CGU tended to decrease, compared with values obtained in control (non-SAH) rats receiving vehicle. In rats that were subjected to SAH, administration of AVS significantly (p < 0.05, Tukey's test) improved CBF and CGU in both the frontoparietal and occipital regions compared with administration of vehicle alone.Conclusions. Prophylactic administration of AVS improves CBF and CGU in the rat brain subjected to SAH, and can be a good pharmacological treatment for the prevention of DINDs following SAH.


2012 ◽  
Vol 18 (3) ◽  
pp. 264-274 ◽  
Author(s):  
N. Kawai ◽  
M. Kawanishi ◽  
A. Shindou ◽  
N. Kudomi ◽  
Y. Yamamoto ◽  
...  

Balloon test occlusion (BTO) of the internal carotid artery (ICA) combined with cerebral blood flow (CBF) study is a sensitive test for predicting the outcome of permanent ICA occlusion. However, false negative results sometimes occur using single photon emission tomography (SPECT). We have recently developed a rapid positron emission tomography (PET) protocol that measures not only the CBF but also the cerebral oxygen metabolism before and during BTO in succession. We measured acute changes in regional CBF and OEF/CMRO2 before and during BTO in three cases with large or giant cerebral aneurysms using the rapid PET protocol. Although no patients showed ischemic symptoms during BTO, PET studies exhibited mildly to moderately decreased CBF (9∼34%) compared to the values obtained before BTO in all cases. The average OEF during BTO was significantly increased (21% and 43%) than that of before BTO in two cases. The two cases were considered to be non-tolerant for permanent ICA occlusion and treated without ICA sacrifice. Measurement of the CBF and OEF/CMRO2 using a rapid PET protocol before and during BTO is feasible and can be used for accurate assessment of tolerance prediction in ICA occlusion.


Sign in / Sign up

Export Citation Format

Share Document