scholarly journals Adenosine Receptors and the Nucleoside Transporter in Human Brain Vasculature

1988 ◽  
Vol 8 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Rajesh N. Kalaria ◽  
Sami I. Harik

Evidence suggests that adenosine modulates neuronal and cerebral vascular functions by interacting with specific receptors on brain cells and blood vessels. Adenosine and other nucleosides are also transported across the blood-brain barrier via a saturable, carrier-mediated mechanism. Using direct ligand binding methods, we studied the two adenosine receptor subtypes, A1 and A2, and the nucleoside transporter moiety in human brain microvessels, pial vessels, choroid plexus, and cerebral cortex membranes. The following specific tritiated ligands were used: cyclohexyladenosine (CHA) for A1 receptors; 5'- N-ethylcarboxamide adenosine (NECA) for A2 receptors; nitrobenzylthioinosine (NBMPR) and dipyridamole (DPY) for nucleoside transporters. We find that cerebral microvessels, pial vessels, and choroid plexus have few, if any, A1 receptors, in contradistinction to cerebral membranes, which have a 10–20-fold higher density of A1 receptor sites. Specific high-affinity NECA binding to A2 receptors in cerebral microvessels, pial vessels, and choroid plexus was saturable and was equivalent to that of cerebral cortical membranes. The Bmax and Kd of the high-affinity NECA binding to vessel preparations were ∼1.3 pmol/mg protein and ∼250 n M, respectively, which is similar to our previous findings in the rat and pig. NBMPR and binding were also saturable and were consistent with a single class of high-affinity binding sites. The density of nucleoside transporters was ∼four-fold higher in cerebral microvessels than in cerebral cortex, pial vessels, and choroid plexus. These results suggest that human cerebral microvessels have A2, but not A1, receptors and are particularly enriched with the adenosine transporter moiety.

1986 ◽  
Vol 6 (4) ◽  
pp. 463-470 ◽  
Author(s):  
Rajesh N. Kalaria ◽  
Sami I. Harik

We studied, by ligand binding methods, the two adenosine receptors, A, and A2, in rat and pig cerebral microvessels and pig choroid plexus. Ligand binding to cerebral microvessels was compared with that to membranes of the cerebral cortex. [3H]Cyclohexyladenosine and [3H]l-phenylisopropyladenosine were the ligands used for A1-receptors, and [3H]5'- N-ethylcarboxamide adenosine ([3H]NECA) was used to assess A2-receptors. We report that cerebral microvessels and choroid plexus exhibit specific [3H]NECA binding, but have no appreciable A1-receptor ligand binding sites. Specific binding of [3H]NECA to cerebral microvessels, choroid plexus, and cerebral cortex was saturable and suggested the existence of two classes of A2-receptor sites: high-affinity ( Kd ∼ 250 n M) and low-affinity ( Kd ∼ 1–2 μ M) sites. The Kd and Bmax of NECA binding to cerebral microvessels and cerebral cortex were similar within each species. Our results, indicating the existence of A2-receptors in cerebral microvessels, are consistent with results of increased adenylate cyclase activity by adenosine and some of its analogues in these microvessels.


1986 ◽  
Vol 240 (3) ◽  
pp. 879-883 ◽  
Author(s):  
M M Shi ◽  
J D Young

Membranes from guinea-pig lung exhibited high-affinity binding of [3H]dipyridamole, a potent inhibitor of nucleoside transport. Binding (apparent KD 2 nM) was inhibited by the nucleoside-transport inhibitors nitrobenzylthioinosine (NBMPR), dilazep and lidoflazine and by the transported nucleosides uridine and adenosine. In contrast, there was no detectable high-affinity binding of [3H]dipyridamole to lung membranes from the rat, a species whose nucleoside transporters exhibit a low sensitivity to dipyridamole inhibition. Bmax. values for high-affinity binding of [3H]dipyridamole and [3H]NBMPR to guinea-pig membranes were similar, suggesting that these structurally unrelated ligands bind to the NBMPR-sensitive nucleoside transporter with the same stoichiometry.


1991 ◽  
Vol 11 (4) ◽  
pp. 557-566 ◽  
Author(s):  
Parvin Homayoun ◽  
Sami I. Harik

We examined by ligand binding methods whether bradykinin (BK) receptors exist in rat and pig cerebral microvessels, and in the cerebral cortex from which the microvessels were isolated. We found a high-affinity and saturable BK receptor site in both rat and pig cerebral microvessels, but not in their cerebral cortex. The maximal density of binding and the dissociation constant were 8.0 ± 4.1 and 6.8 ± 1.5 fmol/mg of protein and 47 ± 24 and 150 ± 8 p M (mean ± SD) in cerebral microvessels of the pig and rat, respectively. The high-affinity specific binding of BK was effectively displaced by des-Arg0[Hyp3-Thi5–8,D-Phe7]BK, a specific B2 receptor antagonist, but not by des-Arg9[Leu8]BK, a specific B1 antagonist. We also demonstrated that BK increases phosphatidylinositol hydrolysis in cerebral microvessels of the rat and pig. This effect was also blocked by the B2, but not by the B1, antagonist. Increased phosphatidylinositol hydrolysis was manifested by a rapid transient increase in inositol trisphosphate and the later slow accumulation of inositol bisphosphate and inositol monophosphate. Preincubation of microvessels with phorbol ester, stable GTP analogs, pertussis toxin, or in Ca2+-free buffer did not influence BK activation of phosphatidylinositol hydrolysis. These results demonstrate the existence of BK receptors of the B2 subtype in brain microvessels, which may play an important role in modulation of the brain microcirculation, probably via increased phosphoinositide turnover.


1995 ◽  
Vol 269 (5) ◽  
pp. G628-G646 ◽  
Author(s):  
S. A. Wank

The cholecystokinin (CCK) and gastrin families of peptides act as hormones and neuropeptides on central and peripheral CCK receptors to mediate secretion and motility in the gastrointestinal (GI) tract in the physiological response to a normal meal. CCK and its receptors are also widely distributed in the central nervous system (CNS) and contribute to the regulation of satiety, anxiety, analgesia, and dopamine-mediated behavior. Although the wide distribution, myriad number of functions, and reported pharmacological heterogeneity of CCK receptors would suggest a large number of receptor subtypes, the application of modern molecular biological techniques has identified two CCK receptors, CCK-A receptor (CCK-AR) and CCK-B receptor (CCK-BR), that mediate the actions of CCK and gastrin; gastrin receptors have been found to be identical to CCK-BR. CCK-AR, found predominantly in the GI system and select areas of the CNS, have high affinity for CCK and the nonpeptide antagonist L-364,718, whereas CCK-BR, found predominantly in the CNS and select areas of the GI system, have high affinity for CCK and gastrin and the nonpeptide antagonist L-365,260. Both CCK-AR and CCK-BR are highly conserved between species, although there is some tissue-specific variation in expression. Recombinant receptor expression faithfully reproduces the native receptor pharmacology and signal transduction pathways, allowing direct comparisons of receptor function between species as well as serving as a convenient source of receptor. Our present knowledge of the chromosomal localization, receptor gene structure, and primary sequence will allow further studies in disease association, receptor regulation, and structure-function analysis.


2021 ◽  
Vol 22 (3) ◽  
pp. 1391
Author(s):  
Andrey Kropotov ◽  
Veronika Kulikova ◽  
Kirill Nerinovski ◽  
Alexander Yakimov ◽  
Maria Svetlova ◽  
...  

Nicotinamide riboside (NR), a new form of vitamin B3, is an effective precursor of nicotinamide adenine dinucleotide (NAD+) in human and animal cells. The introduction of NR into the body effectively increases the level of intracellular NAD+ and thereby restores physiological functions that are weakened or lost in experimental models of aging and various pathologies. Despite the active use of NR in applied biomedicine, the mechanism of its transport into mammalian cells is currently not understood. In this study, we used overexpression of proteins in HEK293 cells, and metabolite detection by NMR, to show that extracellular NR can be imported into cells by members of the equilibrative nucleoside transporter (ENT) family ENT1, ENT2, and ENT4. After being imported into cells, NR is readily metabolized resulting in Nam generation. Moreover, the same ENT-dependent mechanism can be used to import the deamidated form of NR, nicotinic acid riboside (NAR). However, NAR uptake into HEK293 cells required the stimulation of its active utilization in the cytosol such as phosphorylation by NR kinase. On the other hand, we did not detect any NR uptake mediated by the concentrative nucleoside transporters (CNT) CNT1, CNT2, or CNT3, while overexpression of CNT3, but not CNT1 or CNT2, moderately stimulated NAR utilization by HEK293 cells.


2000 ◽  
Vol 287 (3) ◽  
pp. 231-235 ◽  
Author(s):  
Jun Nakauchi ◽  
Hirotaka Matsuo ◽  
Do Kyung Kim ◽  
Akiteru Goto ◽  
Arthit Chairoungdua ◽  
...  

2015 ◽  
Vol 308 (8) ◽  
pp. C631-C641 ◽  
Author(s):  
Michele Visentin ◽  
Ersin Selcuk Unal ◽  
Mitra Najmi ◽  
Andras Fiser ◽  
Rongbao Zhao ◽  
...  

The proton-coupled folate transporter (PCFT) mediates intestinal folate absorption and transport of folates across the choroid plexus. This study focuses on the role of Tyr residues in PCFT function. The substituted Cys-accessibility method identified four Tyr residues (Y291, Y362, Y315, and Y414) that are accessible to the extracellular compartment; three of these (Y291, Y362, and Y315) are located within or near the folate binding pocket. When the Tyr residues were replaced with Cys or Ala, these mutants showed similar (up to 6-fold) increases in influx Vmax and Kt/ Ki for [3H]methotrexate and [3H]pemetrexed. When the Tyr residues were replaced with Phe, these changes were moderated or absent. When Y315A PCFT was used as representative of the mutants and [3H]pemetrexed as the transport substrate, this substitution did not increase the efflux rate constant. Furthermore, neither influx nor efflux mediated by Y315A PCFT was transstimulated by the presence of substrate in the opposite compartment; however, substantial bidirectional transstimulation of transport was mediated by wild-type PCFT. This resulted in a threefold greater efflux rate constant for cells that express wild-type PCFT than for cells that express Y315 PCFT under exchange conditions. These data suggest that these Tyr residues, possibly through their rigid side chains, secure the carrier in a high-affinity state for its folate substrates. However, this may be achieved at the expense of constraining the carrier's mobility, thereby decreasing the rate at which the protein oscillates between its conformational states. The Vmax generated by these Tyr mutants may be so rapid that further augmentation during transstimulation may not be possible.


Sign in / Sign up

Export Citation Format

Share Document