scholarly journals The Epithelial Membrane Protein 1 is a Novel Tight Junction Protein of the Blood—Brain Barrier

2008 ◽  
Vol 28 (6) ◽  
pp. 1249-1260 ◽  
Author(s):  
Thorsten Bangsow ◽  
Ewa Baumann ◽  
Carmen Bangsow ◽  
Martina H Jaeger ◽  
Bernhard Pelzer ◽  
...  

In the central nervous system, a constant microenvironment required for neuronal cell activity is maintained by the blood—brain barrier (BBB). The BBB is formed by the brain microvascular endothelial cells (BMEC), which are sealed by tight junctions (TJ). To identify genes that are differentially expressed in BMEC compared with peripheral endothelial cells, we constructed a subtractive cDNA library from porcine BMEC (pBMEC) and aortic endothelial cells (AOEC). Screening the library for differentially expressed genes yielded 26 BMEC-specific transcripts, such as solute carrier family 35 member F2 (SLC35F2), ADP-ribosylation factor-like 5B (ARL5B), TSC22 domain family member 1 (TSC22D1), integral membrane protein 2A (ITM2A), and epithelial membrane protein 1 (EMP1). In this study, we show that EMP1 transcript is enriched in pBMEC compared with brain tissue and that EMP1 protein colocalizes with the TJ protein occludin in mouse BMEC by coimmunoprecipitation and in rat brain vessels by immunohistochemistry. Epithelial membrane protein 1 expression was transiently induced in laser-capture microdissected rat brain vessels after a 20-min global cerebral ischemia, in parallel with the loss of occludin immunoreactivity. The study identifies EMP1 as a novel TJ-associated protein of the BBB and suggests its potential role in the regulation of the BBB function in cerebral ischemia.

Blood ◽  
2011 ◽  
Vol 118 (7) ◽  
pp. 2007-2014 ◽  
Author(s):  
Richard S. Beard ◽  
Jason J. Reynolds ◽  
Shawn E. Bearden

Abstract Hyperhomocysteinemia (HHcy) increases permeability of the blood-brain barrier, but the mechanisms are undetermined. Homocysteine (Hcy) is an agonist of the neuronal N-methyl-D-aspartate receptor (NMDAr). We tested the hypothesis that HHcy disrupts the blood-brain barrier by an NMDAr-dependent mechanism in endothelium. In brain microvascular endothelial cells, there was no change in expression of the adherens junction protein VE-cadherin with Hcy treatment, but there was a significant decrease in the amount of β-catenin at the membrane. Moreover, Hcy caused nuclear translocation of β-catenin and attachment to the promoter for the tight junction protein claudin-5, with concomitant reduction in claudin-5 expression. Using a murine model of HHcy (cbs+/−), treatment for 2 weeks with an NMDAr antagonist (memantine) rescued cerebrovascular expression of claudin-5 and blood-brain barrier permeability to both exogenous sodium fluorescein and endogenous IgG. Memantine had no effect on these parameters in wild-type littermates. The same results were obtained using an in vitro model with brain microvascular endothelial cells. These data provide the first evidence that the NMDAr is required for Hcy-mediated increases in blood-brain barrier permeability. Modulating cerebral microvascular NMDAr activity may present a novel therapeutic target in diseases associated with opening of the blood-brain barrier in HHcy, such as stroke and dementia.


2007 ◽  
Vol 1159 ◽  
pp. 67-76 ◽  
Author(s):  
Joseph C. Lim ◽  
Adam J. Wolpaw ◽  
Maeve A. Caldwell ◽  
Stephen B. Hladky ◽  
Margery A. Barrand

2021 ◽  
Author(s):  
Kei Sato ◽  
Shinsuke Nakagawa ◽  
Yoichi Morofuji ◽  
Yuki Matsunaga ◽  
Takashi Fujimoto ◽  
...  

Abstract Background Cerebral infarction accounts for 85% of all stroke cases. Even in an era of rapid and effective recanalization using an intravascular approach, the majority of patients have poor functional outcomes. Thus, there is an urgent need for the development of therapeutic agents to treat acute ischemic stroke. We evaluated the effect of fasudil, a Rho kinase inhibitor, on blood brain barrier (BBB) functions under normoxia or oxygen-glucose deprivation (OGD) conditions using a primary cell-based in vitro BBB model. Medhods: BBB models from rat primary cultures (brain capillary endothelial cells, astrocytes, and pericytes) were subjected to either normoxia or 6-hour OGD/24-hour reoxygenation. To assess the effects of fasudil on BBB functions, we evaluated real time impedance, transendothelial electrical resistance (TEER), sodium fluorescein permeability, and tight junction protein expression using immunohistochemistry and western blotting. Lastly, to understand the observed protective mechanism on BBB functions by fasudil we examined the role of cyclooxygenase-2 and thromboxane A2 receptor agonist U-46619 in BBB-forming cells. Results We found that treatment with 0.3–30 µM of fasudil increased cellular impedance. Fasudil enhanced barrier properties in a concentration-dependent manner, as measured by an increased (TEER) and decreased permeability. Fasudil also increased the expression of tight junction protein claudin-5. Reductions in TEER and increased permeability were observed after OGD/reoxygenation exposure in mono- and co-culture models. The improvement in BBB integrity by fasudil was confirmed in both of the models, but was significantly higher in the co-culture than in the monoculture model. Treatment with U-46619 did not show significant changes in TEER in the monoculture model, whereas it showed a significant reduction in TEER in the co-culture model. Fasudil significantly improved the U-46619-induced TEER reduction in the co-culture models. Pericytes and astrocytes have opposite effects on endothelial cells and may contribute to endothelial injury in hyperacute ischemic stroke. Overall, fasudil protects the integrity of BBB both by a direct protective effect on endothelial cells and by a pathway mediated via pericytes and astrocytes. Conclusions Our findings suggest that fasudil is a BBB-protective agent against acute ischemic stroke.


1992 ◽  
Vol 103 (1) ◽  
pp. 23-37 ◽  
Author(s):  
N.J. Abbott ◽  
C.C. Hughes ◽  
P.A. Revest ◽  
J. Greenwood

Primary culture of rat brain endothelial cells is described, based on the method of C. C. W. Hughes and P. L. Lantos. The cells have been characterised using morphological and immunocytochemical techniques, and systematic studies undertaken to determine the optimal culture medium and conditions required to grow the cells at high purity on a variety of substrata. The endothelial cells have a spindle-shaped morphology, and proliferate as plaques from small clusters of cells associated with capillary fragments in the starting material. Tight junction-like cell:cell appositions are seen at the electron-microscopic level. The cells show characteristic staining for antigens recognized by antibodies against von Willebrand factor (Factor VIII-related antigen), angiotensin-converting enzyme (ACE), the transferrin receptor (Ox-26), actin and vimentin. They also show binding of the lectin from Ulex europaeus (UEA I). Potential contaminating cells include smooth muscle, fibroblasts, pericytes and meningeal cells. Contaminants can be kept to < ca. 5% by careful removal of large vessels and meninges during dissection, by brief treatment with Ca(2+)- and Mg(2+)-free saline, by growth in medium supplemented with plasma-derived serum treated for removal of platelet-derived growth factor (PDGF), and by occasional use of medium in which D-valine is substituted for L-valine. Cells attach well to collagen-coated plastic, less well to glass. Cells can be grown on transparent collagen filters (ICN, Cellagen and Costar, Transwell-Col), and on microcarrier beads (Pharmacia, Cytodex-3). The culture has proved to be a useful preparation for studies of cellular physiology, pharmacology and biochemistry of the brain endothelium, and represents a first step in producing an in vitro model of the rat blood-brain barrier.


2020 ◽  
Vol 9 (18) ◽  
Author(s):  
Nikola Sladojevic ◽  
Brian Yu ◽  
James K. Liao

Background Regulator of G‐protein signaling 5 (RGS5) is a negative modulator of G‐protein–coupled receptors. The role of RGS5 in brain endothelial cells is not known. We hypothesized that RGS5 in brain microvascular endothelial cells may be an important mediator of blood‐brain barrier function and stroke severity after focal cerebral ischemia. Methods and Results Using a transient middle cerebral artery occlusion model, we found that mice with global and endothelial‐specific deletion of Rgs5 exhibited larger cerebral infarct size, greater neurological motor deficits, and increased brain edema. In our in vitro models, we observed increased G q activity and elevated intracellular Ca 2+ levels in brain endothelial cells. Furthermore, the loss of endothelial RGS5 leads to decreased endothelial NO synthase expression and phosphorylation, relocalization of endothelial tight junction proteins, and increased cell permeability. Indeed, RGS5 deficiency leads to increased Rho‐associated kinase and myosin light chain kinase activity, which were partially reversed in our in vitro model by pharmacological inhibition of G q , metabotropic glutamate receptor 1, and ligand‐gated ionotropic glutamate receptor. Conclusions Our findings indicate that endothelial RGS5 plays a novel neuroprotective role in focal cerebral ischemia. Loss of endothelial RGS5 leads to hyperresponsiveness to glutamate signaling pathways, enhanced Rho‐associated kinase– and myosin light chain kinase–mediated actin‐cytoskeleton reorganization, endothelial dysfunction, tight junction protein relocalization, increased blood‐brain barrier permeability, and greater stroke severity. These findings suggest that preservation of endothelial RGS5 may be an important therapeutic strategy for maintaining blood‐brain barrier integrity and limiting the severity of ischemic stroke.


2021 ◽  
Vol 22 (13) ◽  
pp. 7057
Author(s):  
Joana Godinho-Pereira ◽  
Ana Rita Garcia ◽  
Inês Figueira ◽  
Rui Malhó ◽  
Maria Alexandra Brito

Breast cancer (BC) brain metastases is a life-threatening condition to which accounts the poor understanding of BC cells’ (BCCs) extravasation into the brain, precluding the development of preventive strategies. Thus, we aimed to unravel the players involved in the interaction between BCCs and blood–brain barrier (BBB) endothelial cells underlying BBB alterations and the transendothelial migration of malignant cells. We used brain microvascular endothelial cells (BMECs) as a BBB in vitro model, under conditions mimicking shear stress to improve in vivo-like BBB features. Mixed cultures were performed by the addition of fluorescently labelled BCCs to distinguish individual cell populations. BCC–BMEC interaction compromised BBB integrity, as revealed by junctional proteins (β-catenin and zonula occludens-1) disruption and caveolae (caveolin-1) increase, reflecting paracellular and transcellular hyperpermeability, respectively. Both BMECs and BCCs presented alterations in the expression pattern of connexin 43, suggesting the involvement of the gap junction protein. Myosin light chain kinase and phosphorylated myosin light chain were upregulated, revealing the involvement of the endothelial cytoskeleton in the extravasation process. β4-Integrin and focal adhesion kinase were colocalised in malignant cells, reflecting molecular interaction. Moreover, BCCs exhibited invadopodia, attesting migratory properties. Collectively, hub players involved in BC brain metastases formation were unveiled, disclosing possible therapeutic targets for metastases prevention.


Sign in / Sign up

Export Citation Format

Share Document