Metformin induces up-regulation of blood–brain barrier functions by activating AMP-activated protein kinase in rat brain microvascular endothelial cells

2013 ◽  
Vol 433 (4) ◽  
pp. 586-590 ◽  
Author(s):  
Fuyuko Takata ◽  
Shinya Dohgu ◽  
Junichi Matsumoto ◽  
Takashi Machida ◽  
Shuji Kaneshima ◽  
...  
Blood ◽  
2011 ◽  
Vol 118 (7) ◽  
pp. 2007-2014 ◽  
Author(s):  
Richard S. Beard ◽  
Jason J. Reynolds ◽  
Shawn E. Bearden

Abstract Hyperhomocysteinemia (HHcy) increases permeability of the blood-brain barrier, but the mechanisms are undetermined. Homocysteine (Hcy) is an agonist of the neuronal N-methyl-D-aspartate receptor (NMDAr). We tested the hypothesis that HHcy disrupts the blood-brain barrier by an NMDAr-dependent mechanism in endothelium. In brain microvascular endothelial cells, there was no change in expression of the adherens junction protein VE-cadherin with Hcy treatment, but there was a significant decrease in the amount of β-catenin at the membrane. Moreover, Hcy caused nuclear translocation of β-catenin and attachment to the promoter for the tight junction protein claudin-5, with concomitant reduction in claudin-5 expression. Using a murine model of HHcy (cbs+/−), treatment for 2 weeks with an NMDAr antagonist (memantine) rescued cerebrovascular expression of claudin-5 and blood-brain barrier permeability to both exogenous sodium fluorescein and endogenous IgG. Memantine had no effect on these parameters in wild-type littermates. The same results were obtained using an in vitro model with brain microvascular endothelial cells. These data provide the first evidence that the NMDAr is required for Hcy-mediated increases in blood-brain barrier permeability. Modulating cerebral microvascular NMDAr activity may present a novel therapeutic target in diseases associated with opening of the blood-brain barrier in HHcy, such as stroke and dementia.


Author(s):  
Lorena Gárate-Vélez ◽  
Claudia Escudero-Lourdes ◽  
Daniela Salado-Leza ◽  
Armando González-Sánchez ◽  
Ildemar Alvarado-Morales ◽  
...  

Background: Iron nanoparticles, mainly in magnetite phase (Fe3O4 NPs), are released to the environment in areas with high traffic density and braking frequency. Fe3O4 NPs were found in postmortem human brains and are assumed to get directly into the brain through the olfactory nerve. However, these pollution-derived NPs may also translocate from the lungs to the bloodstream and then, through the blood-brain barrier (BBB), into the brain inducing oxidative and inflammatory responses that contribute to neurodegeneration. Objective: To describe the interaction and toxicity of pollution-derived Fe3O4 NPs on primary rat brain microvascular endothelial cells (rBMECs), main constituents of in vitro BBB models. Methods: Synthetic bare Fe3O4 NPs that mimic the environmental ones (miFe3O4) were synthesized by co-precipitation and characterized using complementary techniques. The rBMECs were cultured in Transwell® plates. The NPs-cell interaction was evaluated through transmission electron microscopy and standard colorimetric in vitro assays. Results: The miFe3O4 NPs, with a mean diameter of 8.45 ± 0.14 nm, presented both magnetite and maghemite phases, and showed super-paramagnetic properties. Results suggest that miFe3O4 NPs are internalized by rBMECs through endocytosis and that they are able to cross the cells monolayer. The lowest miFe3O4 NPs concentration tested induced mid cytotoxicity in terms of 1) membrane integrity (LDH release) and 2) metabolic activity (MTS transformation). Conclusion: Pollution-derived Fe3O4 NPs may interact and cross the microvascular endothelial cells forming the BBB and cause biological damage.


2000 ◽  
Vol 68 (11) ◽  
pp. 6423-6430 ◽  
Author(s):  
Marpadga A. Reddy ◽  
Carol A. Wass ◽  
Kwang Sik Kim ◽  
David D. Schlaepfer ◽  
Nemani V. Prasadarao

ABSTRACT Escherichia coli K1 traversal across the blood-brain barrier is an essential step in the pathogenesis of neonatal meningitis. We have previously shown that invasive E. colipromotes the actin rearrangement of brain microvascular endothelial cells (BMEC), which constitute a lining of the blood-brain barrier, for invasion. However, signal transduction mechanisms involved in E. coli invasion are not defined. In this report we show that tyrosine kinases play a major role in E. coli invasion of human BMEC (HBMEC). E. coli induced tyrosine phosphorylation of HBMEC cytoskeletal proteins, focal adhesion kinase (FAK), and paxillin, with a concomitant increase in the association of paxillin with FAK. Overexpression of a dominant interfering form of the FAK C-terminal domain, FRNK (FAK-related nonkinase), significantly inhibited E. coli invasion of HBMEC. Furthermore, we found that FAK kinase activity and the autophosphorylation site (Tyr397) are important in E. coli invasion of HBMEC, whereas the Grb2 binding site (Tyr925) is not required. Immunocytochemical studies demonstrated that FAK is recruited to focal plaques at the site of bacterial entry. Consistent with the invasion results, overexpression of FRNK, a kinase-negative mutant (Arg454 FAK), and a Src binding mutant (Phe397 FAK) inhibited the accumulation of FAK at the bacterial entry site. The overexpression of FAK mutants in HBMEC also blocked theE. coli-induced tyrosine phosphorylation of FAK and its association with paxillin. These observations provide evidence that FAK tyrosine phosphorylation and its recruitment to the cytoskeleton play a key role in E. coli invasion of HBMEC.


2017 ◽  
Vol 38 (5) ◽  
pp. 809-822 ◽  
Author(s):  
Hu Zhang ◽  
Shuhong Zhang ◽  
Jilin Zhang ◽  
Dongxin Liu ◽  
Jiayi Wei ◽  
...  

The level of granulocyte-macrophage colony-stimulating factor (GM-CSF) increases in some disorders such as vascular dementia, Alzheimer’s disease, and multiple sclerosis. We previously reported that in Alzheimer’s disease patients, a high level of GM-CSF in the brain parenchyma downregulated expression of ZO-1, a blood–brain barrier tight junction protein, and facilitated the infiltration of peripheral monocytes across the blood–brain barrier. However, the molecular mechanism underlying regulation of ZO-1 expression by GM-CSF is unclear. Herein, we found that the erythroblast transformation-specific (ETS) transcription factor ERG cooperated with the proto-oncogene protein c-MYC in regulation of ZO-1 transcription in brain microvascular endothelial cells (BMECs). The ERG expression was suppressed by miR-96 which was increased by GM-CSF through the phosphoinositide-3 kinase (PI3K)/Akt pathway. Inhibition of miR-96 prevented ZO-1 down-regulation induced by GM-CSF both in vitro and in vivo. Our results revealed the mechanism of ZO-1 expression reduced by GM-CSF, and provided a potential target, miR-96, which could block ZO-1 down-regulation caused by GM-CSF in BMECs.


1999 ◽  
Vol 67 (3) ◽  
pp. 1131-1138 ◽  
Author(s):  
Nemani V. Prasadarao ◽  
Carol A. Wass ◽  
Sheng-He Huang ◽  
Kwang Sik Kim

ABSTRACT The molecular basis of Escherichia coli traversal of the blood-brain barrier in the development of E. colimeningitis is not well understood. We have previously shown that a novel Ibe10 protein found in cerebrospinal fluid isolates of E. coli is necessary for invasion of the brain microvascular endothelial cells (BMEC) that constitute the blood-brain barrier both in vitro and in a newborn rat model of hematogenous meningitis. Here we identified a novel Ibe10 binding molecule/receptor (Ibe10R) on both bovine BMEC (HBMEC) and human BMEC (HBMEC) that is responsible for invasion by E. coli. Ibe10R, an approximately 55-kDa protein, was purified from BBMEC by Ibe10-Ni-Sepharose affinity chromatography. Bovine Ibe10R, as well as polyclonal antibodies to Ibe10R, blocked E. coli invasion of BBMEC very effectively. The N-terminal amino acid sequence of Ibe10R showed 75% homology to serum albumin. However, the amino acid sequence of an Ibe10R fragment generated by limited enzymatic digestion did not reveal homology to any other proteins, suggesting that Ibe10R represents a novel albumin-like protein. Immunocytochemical analysis of BBMEC using anti-Ibe10R antibody suggested that only a subset of cultured BBMEC express Ibe10R on their surface. Enrichment of Ibe10R-positive BBMEC by fluorescence-activated cell sorting with anti-Ibe10R antibody resulted in enhanced invasion by E. coli. The anti-Ibe10R antibody raised against bovine Ibe10R also blocked E. coli invasion of HBMEC very effectively. Interestingly, anti-Ibe10R antibody affinity chromatography of HBMEC membrane proteins revealed a smaller protein with an approximate molecular mass of 45 kDa. These results suggest that the Ibe10 of E. coli interacts with a novel BMEC surface protein, Ibe10R, for invasion of both BBMEC and HBMEC.


Sign in / Sign up

Export Citation Format

Share Document