scholarly journals Glutamate Transporter Type 3 Knockout Reduces Brain Tolerance to Focal Brain Ischemia in MICE

2010 ◽  
Vol 31 (5) ◽  
pp. 1283-1292 ◽  
Author(s):  
Liaoliao Li ◽  
Zhiyi Zuo

Excitatory amino-acid transporters (EAATs) transport glutamate into cells under physiologic conditions. Excitatory amino-acid transporter type 3 (EAAT3) is the major neuronal EAAT and also uptakes cysteine, the rate-limiting substrate for synthesis of glutathione. Thus, we hypothesize that EAAT3 contributes to providing brain ischemic tolerance. Male 8-week-old EAAT3 knockout mice on CD-1 mouse gene background and wild-type CD-1 mice were subjected to right middle cerebral artery occlusion for 90 minutes. Their brain infarct volumes, neurologic functions, and brain levels of glutathione, nitrotyrosine, and 4-hydroxy-2-nonenal (HNE) were evaluated. The EAAT3 knockout mice had bigger brain infarct volumes and worse neurologic deficit scores and motor coordination functions than did wild-type mice, no matter whether these neurologic outcome parameters were evaluated at 24 hours or at 4 weeks after brain ischemia. The EAAT3 knockout mice contained higher levels of HNE in the ischemic penumbral cortex and in the nonischemic cerebral cortex than did wild-type mice. Glutathione levels in the ischemic and nonischemic cortices of EAAT3 knockout mice tended to be lower than those of wild-type mice. Our results suggest that EAAT3 is important in limiting ischemic brain injury after focal brain ischemia. This effect may involve attenuating brain oxidative stress.

2016 ◽  
Vol 40 (5) ◽  
pp. 1252-1260 ◽  
Author(s):  
Abeer Abousaab ◽  
Florian Lang

Background: Cellular uptake of glutamate by the excitatory amino-acid transporters (EAATs) decreases excitation and thus participates in the regulation of neuroexcitability. Kinases impacting on neuronal function include Lithium-sensitive glycogen synthase kinase GSK3ß. The present study thus explored whether the activities of EAAT3 and/or EAAT4 isoforms are sensitive to GSK3ß. Methods: cRNA encoding wild type EAAT3 (SLC1A1) or EAAT4 (SLC1A6) was injected into Xenopus oocytes without or with additional injection of cRNA encoding wild type GSK3ß or the inactive mutant K85AGSK3ß. Dual electrode voltage clamp was performed in order to determine glutamate-induced current (IEAAT). Results: Appreciable IEAAT was observed in EAAT3 or EAAT4 expressing but not in water injected oocytes. IEAAT was significantly increased by coexpression of GSK3ß but not by coexpression of K85AGSK3ß. Coexpression of GSK3ß increased significantly the maximal IEAAT in EAAT3 or EAAT4 expressing oocytes, without significantly modifying apparent affinity of the carriers. Lithium (1 mM) exposure for 24 hours decreased IEAAT in EAAT3 and GSK3ß expressing oocytes to values similar to IEAAT in oocytes expressing EAAT3 alone. Lithium did not significantly modify IEAAT in oocytes expressing EAAT3 without GSK3ß. Conclusions: Lithium-sensitive GSK3ß is a powerful regulator of excitatory amino acid transporters EAAT3 and EAAT4.


2014 ◽  
Vol 65 ◽  
pp. 69-81 ◽  
Author(s):  
Maxime Assous ◽  
Laurence Had-Aissouni ◽  
Paolo Gubellini ◽  
Christophe Melon ◽  
Imane Nafia ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yunlong Zhang ◽  
Feng Tan ◽  
Pingyi Xu ◽  
Shaogang Qu

Parkinson’s disease (PD) is the most common movement disorder disease in the elderly and is characterized by degeneration of dopamine neurons and formation of Lewy bodies. Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). If glutamate is not removed promptly in the synaptic cleft, it will excessively stimulate the glutamate receptors and induce excitotoxic effects on the CNS. With lack of extracellular enzyme to decompose glutamate, glutamate uptake in the synaptic cleft is mainly achieved by the excitatory amino acid transporters (EAATs, also known as high-affinity glutamate transporters). Current studies have confirmed that decreased expression and function of EAATs appear in PD animal models. Moreover, single unilateral administration of EAATs inhibitor in the substantia nigra mimics several PD features and this is a solid evidence supporting that decreased EAATs contribute to the process of PD. Drugs or treatments promoting the expression and function of EAATs are shown to attenuate dopamine neurons death in the substantia nigra and striatum, ameliorate the behavior disorder, and improve cognitive abilities in PD animal models. EAATs are potential effective drug targets in treatment of PD and thus study of relationship between EAATs and PD has predominant medical significance currently.


PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e70988 ◽  
Author(s):  
Ahmad Almilaji ◽  
Carlos Munoz ◽  
Tatsiana Pakladok ◽  
Ioana Alesutan ◽  
Martina Feger ◽  
...  

2017 ◽  
Vol 43 (5) ◽  
pp. 1907-1916 ◽  
Author(s):  
Birgitta C. Burckhardt ◽  
Gerhard Burckhardt

Background/Aims: Inborn deficiency of the N-acetylglutamate synthase (NAGS) impairs the urea cycle and causes neurotoxic hyperammonemia. Oral administration of N-carbamoylglutamate (NCG), a synthetic analog of N-acetylglutamate (NAG), successfully decreases plasma ammonia levels in the affected children. Due to structural similarities to glutamate, NCG may be absorbed in the intestine and taken up into the liver by excitatory amino acid transporters (EAATs). Methods: Using Xenopus laevis oocytes expressing either human EAAT1, 2, or 3, or human sodium-dependent dicarboxylate transporter 3 (NaDC3), transport-associated currents of NAG, NCG, and related dicarboxylates were assayed. Results: L-aspartate and L-glutamate produced saturable inward currents with Km values below 30 µM. Whereas NCG induced a small inward current only in EAAT3 expressing oocytes, NAG was accepted by all EAATs. With EAAT3, the NAG-induced current was sodium-dependent and saturable (Km 409 µM). Oxaloacetate was found as an additional substrate of EAAT3. In NaDC3-expressing oocytes, all dicarboxylates induced much larger inward currents than did L-aspartate and L-glutamate. Conclusion: EAAT3 may contribute to intestinal absorption and hepatic uptake of NCG. With respect to transport of amino acids and dicarboxylates, EAAT3 and NaDC3 can complement each other.


2000 ◽  
Vol 279 (2) ◽  
pp. G366-G373 ◽  
Author(s):  
Agnès Mordrelle ◽  
Eric Jullian ◽  
Cyrille Costa ◽  
Estelle Cormet-Boyaka ◽  
Robert Benamouzig ◽  
...  

Little is known concerning the expression of amino acid transporters during intestinal epithelial cell differentiation. The transport mechanism ofl-glutamate and its regulation during the differentiation process were investigated using the human intestinal Caco-2 cell line. Kinetic studies demonstrated the presence of a single, high-affinity,d-aspartate-sensitive l-glutamate transport system in both confluent and fully differentiated Caco-2 cells. This transport was clearly Na+ dependent, with a Hill coefficient of 2.9 ± 0.3, suggesting a 3 Na+-to-1 glutamate stoichiometry and corresponding to the well-characterized XA,G − system. The excitatory amino acid transporter (EAAT)1 transcript was consistently expressed in the Caco-2 cell line, whereas the epithelial and neuronal EAAT3 transporter was barely detected. In contrast with systems B0 and y+, which have previously been reported to be downregulated when Caco-2 cells stop proliferating, l-glutamate transport capacity was found to increase steadily between day 8 and day 17. This increase was correlated with the level of EAAT1 mRNA, which might reflect an increase in EAAT1 gene transcription and/or stabilization of the EAAT1 transcript.


CNS Drugs ◽  
2020 ◽  
Vol 34 (11) ◽  
pp. 1089-1103 ◽  
Author(s):  
Aleksey V. Zaitsev ◽  
Ilya V. Smolensky ◽  
Pascal Jorratt ◽  
Saak V. Ovsepian

Sign in / Sign up

Export Citation Format

Share Document