scholarly journals The Vascular Steal Phenomenon is an Incomplete Contributor to Negative Cerebrovascular Reactivity in Patients with Symptomatic Intracranial Stenosis

2014 ◽  
Vol 34 (9) ◽  
pp. 1453-1462 ◽  
Author(s):  
Daniel F Arteaga ◽  
Megan K Strother ◽  
Carlos C Faraco ◽  
Lori C Jordan ◽  
Travis R Ladner ◽  
...  

‘Vascular steal’ has been proposed as a compensatory mechanism in hemodynamically compromised ischemic parenchyma. Here, independent measures of cerebral blood flow (CBF) and blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) responses to a vascular stimulus in patients with ischemic cerebrovascular disease are recorded. Symptomatic intracranial stenosis patients ( n = 40) underwent a multimodal 3.0T MRI protocol including structural (T1-weighted and T2-weighted fluid-attenuated inversion recovery) and hemodynamic (BOLD and CBF-weighted arterial spin labeling) functional MRI during room air and hypercarbic gas administration. CBF changes in regions demonstrating negative BOLD reactivity were recorded, as well as clinical correlates including symptomatic hemisphere by infarct and lateralizing symptoms. Fifteen out of forty participants exhibited negative BOLD reactivity. Of these, a positive relationship was found between BOLD and CBF reactivity in unaffected (stenosis degree <50%) cortex. In negative BOLD cerebrovascular reactivity regions, three patients exhibited significant ( P < 0.01) reductions in CBF consistent with vascular steal; six exhibited increases in CBF; and the remaining exhibited no statistical change in CBF. Secondary findings were that negative BOLD reactivity correlated with symptomatic hemisphere by lateralizing clinical symptoms and prior infarcts(s). These data support the conclusion that negative hypercarbia-induced BOLD responses, frequently assigned to vascular steal, are heterogeneous in origin with possible contributions from autoregulation and/or metabolism.

2021 ◽  
pp. 0271678X2110645
Author(s):  
Pieter T Deckers ◽  
Alex A Bhogal ◽  
Mathijs BJ Dijsselhof ◽  
Carlos C Faraco ◽  
Peiying Liu ◽  
...  

Blood oxygenation level-dependent (BOLD) or arterial spin labeling (ASL) MRI with hypercapnic stimuli allow for measuring cerebrovascular reactivity (CVR). Hypercapnic stimuli are also employed in calibrated BOLD functional MRI for quantifying neuronally-evoked changes in cerebral oxygen metabolism (CMRO2). It is often assumed that hypercapnic stimuli (with or without hyperoxia) are iso-metabolic; increasing arterial CO2 or O2 does not affect CMRO2. We evaluated the null hypothesis that two common hypercapnic stimuli, ‘CO2 in air’ and carbogen, are iso-metabolic. TRUST and ASL MRI were used to measure the cerebral venous oxygenation and cerebral blood flow (CBF), from which the oxygen extraction fraction (OEF) and CMRO2 were calculated for room-air, ‘CO2 in air’ and carbogen. As expected, CBF significantly increased (9.9% ± 9.3% and 12.1% ± 8.8% for ‘CO2 in air’ and carbogen, respectively). CMRO2 decreased for ‘CO2 in air’ (−13.4% ± 13.0%, p < 0.01) compared to room-air, while the CMRO2 during carbogen did not significantly change. Our findings indicate that ‘CO2 in air’ is not iso-metabolic, while carbogen appears to elicit a mixed effect; the CMRO2 reduction during hypercapnia is mitigated when including hyperoxia. These findings can be important for interpreting measurements using hypercapnic or hypercapnic-hyperoxic (carbogen) stimuli.


2020 ◽  
Vol 70 ◽  
pp. 50-56
Author(s):  
Giovanni Muscas ◽  
Christiaan Hendrik Bas van Niftrik ◽  
Martina Sebök ◽  
Katharina Seystahl ◽  
Marco Piccirelli ◽  
...  

2015 ◽  
Vol 35 (12) ◽  
pp. 2032-2042 ◽  
Author(s):  
Carlos C Faraco ◽  
Megan K Strother ◽  
Jeroen CW Siero ◽  
Daniel F Arteaga ◽  
Allison O Scott ◽  
...  

Cerebrovascular reactivity (CVR)-weighted blood-oxygenation-level-dependent magnetic resonance imaging (BOLD-MRI) experiments are frequently used in conjunction with hyperoxia. Owing to complex interactions between hyperoxia and hypercapnia, quantitative effects of these gas mixtures on BOLD responses, blood and tissue R2∗, and blood oxygenation are incompletely understood. Here we performed BOLD imaging (3T; TE/TR = 35/2,000 ms; spatial resolution = 3×3×3.5 mm3) in healthy volunteers ( n = 12; age = 29±4.1 years) breathing (i) room air (RA), (ii) normocapnic-hyperoxia (95% O2/5% N2, HO), (iii) hypercapnic-normoxia (5% CO2/21% O2/74% N2, HC-NO), and (iv) hypercapnic-hyperoxia (5% CO2/95% O2, HC-HO). For HC-HO, experiments were performed with separate RA and HO baselines to control for changes in O2. T2-relaxation-under-spin-tagging MRI was used to calculate basal venous oxygenation. Signal changes were quantified and established hemodynamic models were applied to quantify vasoactive blood oxygenation, blood–water R∗2, and tissue-water R∗2. In the cortex, fractional BOLD changes (stimulus/baseline) were HO/RA = 0.011 ± 0.007; HC-NO/RA = 0.014±0.004; HC-HO/HO = 0.020±0.008; and HC-HO/RA = 0.035 ±0.010; for the measured basal venous oxygenation level of 0.632, this led to venous blood oxygenation levels of 0.660 (HO), 0.665 (HC-NO), and 0.712 (HC-HO). Interleaving a HC-HO stimulus with HO baseline provided a smaller but significantly elevated BOLD response compared with a HC-NO stimulus. Results provide an outline for how blood oxygenation differs for several gas stimuli and provides quantitative information on how hypercapnic BOLD CVR and R∗2 are altered during hyperoxia.


2018 ◽  
Vol 49 ◽  
pp. 123-130 ◽  
Author(s):  
Christiaan Hendrik Bas van Niftrik ◽  
Marco Piccirelli ◽  
Oliver Bozinov ◽  
Nicolai Maldaner ◽  
Catherine Strittmatter ◽  
...  

2002 ◽  
Vol 22 (8) ◽  
pp. 908-917 ◽  
Author(s):  
Noam Harel ◽  
Sang-Pil Lee ◽  
Tsukasa Nagaoka ◽  
Dae-Shik Kim ◽  
Seong-Gi Kim

Functional magnetic resonance imaging (fMRI) techniques are based on the assumption that changes in spike activity are accompanied by modulation in the blood oxygenation level—dependent (BOLD) signal. In addition to conventional increases in BOLD signals, sustained negative BOLD signal changes are occasionally observed and are thought to reflect a decrease in neural activity. In this study, the source of the negative BOLD signal was investigated using T2*-weighted BOLD and cerebral blood volume (CBV) techniques in isoflurane-anesthetized cats. A positive BOLD signal change was observed in the primary visual cortex (area 18) during visual stimulation, while a prolonged negative BOLD change was detected in the adjacent suprasylvian gyrus containing higher-order visual areas. However, in both regions neurons are known to increase spike activity during visual stimulation. The positive and negative BOLD amplitudes obtained at six spatial-frequency stimuli were highly correlated, and negative BOLD percent changes were approximately one third of the postitive changes. Area 18 with positive BOLD signals experienced an increase in CBV, while regions exhibiting the prolonged negative BOLD signal underwent a decrease in CBV. The CBV changes in area 18 were faster than the BOLD signals from the same corresponding region and the CBV changes in the suprasylvian gyrus. The results support the notion that reallocation of cortical blood resources could overcome a local demand for increased cerebral blood flow induced by increased neural activity. The findings of this study imply that caution should be taken when interpreting the negative BOLD signals as a decrease in neuronal activity.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Renata F. Leoni ◽  
Kelley C. Mazzetto-Betti ◽  
Afonso C. Silva ◽  
Antonio C. dos Santos ◽  
Draulio B. de Araujo ◽  
...  

Impaired cerebrovascular reactivity (CVR), a predictive factor of imminent stroke, has been shown to be associated with carotid steno-occlusive disease. Magnetic resonance imaging (MRI) techniques, such as blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL), have emerged as promising noninvasive tools to evaluate altered CVR with whole-brain coverage, when combined with a vasoactive stimulus, such as respiratory task or injection of acetazolamide. Under normal cerebrovascular conditions, CVR has been shown to be globally and homogenously distributed between hemispheres, but with differences among cerebral regions. Such differences can be explained by anatomical specificities and different biochemical mechanisms responsible for vascular regulation. In patients with carotid steno-occlusive disease, studies have shown that MRI techniques can detect impaired CVR in brain tissue supplied by the affected artery. Moreover, resulting CVR estimations have been well correlated to those obtained with more established techniques, indicating that BOLD and ASL are robust and reliable methods to assess CVR in patients with cerebrovascular diseases. Therefore, the present paper aims to review recent studies which use BOLD and ASL to evaluate CVR, in healthy individuals and in patients with carotid steno-occlusive disease, providing a source of information regarding the obtained results and the methodological difficulties.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1840
Author(s):  
Giovanni Muscas ◽  
Christiaan Hendrik Bas van Niftrik ◽  
Martina Sebök ◽  
Alessandro Della Puppa ◽  
Katharina Seystahl ◽  
...  

Background: Current imaging-based discrimination between radiation necrosis versus recurrent glioblastoma contrast-enhancing lesions remains imprecise but is paramount for prognostic and therapeutic evaluation. We examined whether patients with radiation necrosis exhibit distinct patterns of blood oxygenation-level dependent fMRI cerebrovascular reactivity (BOLD-CVR) as the first step to better distinguishing patients with radiation necrosis from recurrent glioblastoma compared with patients with newly diagnosed glioblastoma before surgery and radiotherapy. Methods: Eight consecutive patients with primary and secondary brain tumors and a multidisciplinary clinical and radiological diagnosis of radiation necrosis, and fourteen patients with a first diagnosis of glioblastoma underwent BOLD-CVR mapping. For all these patients, the contrast-enhancing lesion was derived from high-resolution T1-weighted MRI and rendered the volume-of-interest (VOI). From this primary VOI, additional 3 mm concentric expanding VOIs up to 30 mm were created for a detailed perilesional BOLD-CVR tissue analysis between the two groups. Receiver operating characteristic curves assessed the discriminative properties of BOLD-CVR for both groups. Results: Mean intralesional BOLD-CVR values were markedly lower in radiation necrosis than in glioblastoma contrast-enhancing lesions (0.001 ± 0.06 vs. 0.057 ± 0.05; p = 0.04). Perilesionally, a characteristic BOLD-CVR pattern was observed for radiation necrosis and glioblastoma patients, with an improvement of BOLD-CVR values in the radiation necrosis group and persisting lower perilesional BOLD-CVR values in glioblastoma patients. The ROC analysis discriminated against both groups when these two parameters were analyzed together (area under the curve: 0.85, 95% CI: 0.65–1.00). Conclusions: In this preliminary analysis, distinctive intralesional and perilesional BOLD-cerebrovascular reactivity patterns are found for radiation necrosis.


Author(s):  
Giovanni Muscas ◽  
Christiaan Hendrik Bas van Niftrik ◽  
Martina Sebök ◽  
Giuseppe Esposito ◽  
Luca Regli ◽  
...  

AbstractBlood oxygenation-level dependent cerebrovascular reactivity (BOLD-CVR) has gained attention in recent years as an effective way to investigate CVR, a measure of the hemodynamic state of the brain, with high spatial and temporal resolution. An association between impaired CVR and diverse pathologies has been observed, especially in ischemic cerebrovascular diseases and brain gliomas. The ability to obtain this information intraoperatively is novel and has not been widely tested. We report our first experience with this intraoperative technique in vascular and oncologic neurosurgical patients, discuss the results of its feasibility, and the possible developments of the intraoperative employment of BOLD-CVR.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Travis R Ladner ◽  
Carlos Faraco ◽  
Manus J Donahue ◽  
Daniel Arteaga ◽  
Lori C Jordan ◽  
...  

Introduction: Frequent dissociation between clinical severity and angiographic grading of moyamoya supports a role for alternative tissue-level hemodynamic measures. Here, angiography is complemented with noninvasive MRI measurements of parenchymal impairment to assess changes in cerebrovascular reactivity (CVR) after extracranial-intracranial bypass in moyamoya. Hypothesis: CVR is regionally impaired pre-operatively, yet increases after surgery. This can be visualized noninvasively by assessing blood oxygenation level-dependent (BOLD) MRI changes with safe, mildly hypercarbic gas. Methods: Using a block MRI paradigm, carbogen (5% CO 2 ; 95% O 2 3 min) was interleaved with atmospheric air (<1% CO 2 ; 3 min) administration during BOLD MRI in intracranial stenosis patients (n=70), a subset of which (n=9; age=35.7+/-10.8; 7F/2M) underwent indirect (n=8) or direct (n=1) revascularization for moyamoya. Five patients had both pre-operative and post-operative hemodynamic imaging, with post-operative scans performed after 7.3+/-4.1 months. CVR, calculated as a z-statistic in response to hypercarbia vs. atmospheric air, was compared (two-tailed t-test) for each patient between the two time points to correlate CVR changes with surgery. Results: Fig. 1 shows BOLD MRI on a patient scanned before and 2 years after right-sided indirect bypass, with significant (t=79.29, p<0.01) right-sided hemodynamic improvement. Cohort analyses of patients with pre/post-operative scans revealed significant interhemispheric CVR differences prior to surgery (t=3.48, p<0.01), which resolved after bypass (t=0.88, p=0.20). Additionally, CVR increased significantly in the operative hemisphere (t=4.50, p<0.01). Conclusions: CVR-weighted hemodynamic MRI can be implemented into routine clinical protocols, corresponds well with revascularization response, and has potential as a noninvasive complement to angiography for serial monitoring of moyamoya patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
J. Jean Chen ◽  
Claudine J. Gauthier

Task and resting-state functional MRI (fMRI) is primarily based on the same blood-oxygenation level-dependent (BOLD) phenomenon that MRI-based cerebrovascular reactivity (CVR) mapping has most commonly relied upon. This technique is finding an ever-increasing role in neuroscience and clinical research as well as treatment planning. The estimation of CVR has unique applications in and associations with fMRI. In particular, CVR estimation is part of a family of techniques called calibrated BOLD fMRI, the purpose of which is to allow the mapping of cerebral oxidative metabolism (CMRO2) using a combination of BOLD and cerebral-blood flow (CBF) measurements. Moreover, CVR has recently been shown to be a major source of vascular bias in computing resting-state functional connectivity, in much the same way that it is used to neutralize the vascular contribution in calibrated fMRI. Furthermore, due to the obvious challenges in estimating CVR using gas challenges, a rapidly growing field of study is the estimation of CVR without any form of challenge, including the use of resting-state fMRI for that purpose. This review addresses all of these aspects in which CVR interacts with fMRI and the role of CVR in calibrated fMRI, provides an overview of the physiological biases and assumptions underlying hypercapnia-based CVR and calibrated fMRI, and provides a view into the future of non-invasive CVR measurement.


Sign in / Sign up

Export Citation Format

Share Document