scholarly journals Cerebrospinal Fluid Biomarkers of Neurovascular Dysfunction in Mild Dementia and Alzheimer'S Disease

2015 ◽  
Vol 35 (7) ◽  
pp. 1055-1068 ◽  
Author(s):  
Melanie D Sweeney ◽  
Abhay P Sagare ◽  
Berislav V Zlokovic

Alzheimer's disease (AD) is the most common form of age-related dementias. In addition to genetics, environment, and lifestyle, growing evidence supports vascular contributions to dementias including dementia because of AD. Alzheimer's disease affects multiple cell types within the neurovascular unit (NVU), including brain vascular cells (endothelial cells, pericytes, and vascular smooth muscle cells), glial cells (astrocytes and microglia), and neurons. Thus, identifying and integrating biomarkers of the NVU cell-specific responses and injury with established AD biomarkers, amyloid-β (Aβ) and tau, has a potential to contribute to better understanding of the disease process in dementias including AD. Here, we discuss the existing literature on cerebrospinal fluid biomarkers of the NVU cell-specific responses during early stages of dementia and AD. We suggest that the clinical usefulness of established AD biomarkers, Aβ and tau, could be further improved by developing an algorithm that will incorporate biomarkers of the NVU cell-specific responses and injury. Such biomarker algorithm could aid in early detection and intervention as well as identify novel treatment targets to delay disease onset, slow progression, and/or prevent AD.

2017 ◽  
Vol 60 (1) ◽  
pp. 283-293 ◽  
Author(s):  
Ivan Koychev ◽  
Roger N. Gunn ◽  
Azadeh Firouzian ◽  
Jennifer Lawson ◽  
Giovanna Zamboni ◽  
...  

2021 ◽  
pp. 1-19
Author(s):  
Nina Lindblom ◽  
Lars Lindquist ◽  
Jacob Westman ◽  
Mikael Åström ◽  
Roger Bullock ◽  
...  

Background: Accumulating data suggest infectious agents are involved in Alzheimer’s disease (AD). The two primary aims of this trial were to assess safety and efficacy of an antiviral drug combination on AD progression. Objective: The trial evaluated whether Apovir, a combination of two antiviral agents, pleconaril (active on enteroviruses) and ribavirin (active on several viruses), could slow AD progression. Methods: Sixty-nine patients 60–85 years were treated with Apovir or placebo for 9 months and followed until 12 months after end of treatment. Cognitive tests, safety, biomarkers, drug plasma, and cerebrospinal fluid concentrations were assessed. Results: The tolerability of Apovir was compromised as demonstrated by the large drop-out rate and increased frequency and severity of adverse events. The primary endpoint, demonstrating a difference in change from baseline to 9 months between groups in ADAS-cog total score, was not met (p = 0.1809). However, there were observations indicating potential effects on both ADAS-cog and CDR-SB but these effects need to be verified. Also, there was a decrease in cerebrospinal fluid amyloid-β in Apovir at 9 months (p = 0.0330) but no change in placebo. Conclusion: This was the first randomized, placebo controlled clinical trial exploring antiviral treatment on AD progression. The trial is considered inconclusive due to the large drop-out rate. New trials are needed to verify if the indications of effect observed can be confirmed and which component(s) in Apovir contributed to such effects. Pleconaril alone may be studied to improve the tolerability and to verify if enterovirus is involved in the disease process.


2021 ◽  
pp. 1-6
Author(s):  
Jagan A. Pillai ◽  
James Bena ◽  
Lynn M. Bekris ◽  
Nancy Foldvary-Schaefer ◽  
Catherine Heinzinger ◽  
...  

Sleep dysfunction has been identified in the pathophysiology of Alzheimer’s disease (AD); however, the role and mechanism of circadian rhythm dysfunction is less well understood. In a well-characterized cohort of patients with AD at the mild cognitive impairment stage (MCI-AD), we identify that circadian rhythm irregularities were accompanied by altered humoral immune responses detected in both the cerebrospinal fluid and plasma as well as alterations of cerebrospinal fluid biomarkers of neurodegeneration. On the other hand, sleep disruption was more so associated with abnormalities in circulating markers of immunity and inflammation and decrements in cognition.


2018 ◽  
Vol 15 (9) ◽  
pp. 820-827 ◽  
Author(s):  
Ryan Van Patten ◽  
Anne M. Fagan ◽  
David A.S. Kaufman

Background: There exists a need for more sensitive measures capable of detecting subtle cognitive decline due to Alzheimer's disease. Objective: To advance the literature in Alzheimer’s disease by demonstrating that performance on a cued-Stroop task is impacted by preclinical Alzheimer's disease neuropathology. Method: Twenty-nine cognitively asymptomatic older adults completed a computerized, cued-Stroop task in which accuracy rates and intraindividual variability in reaction times were the outcomes of interest. Cerebrospinal fluid biomarkers of Aβ42 and tau were measured and participants were then grouped according to a published p-tau/Aβ42 cutoff reflecting risk for Alzheimer’s disease (preclinical Alzheimer's disease = 14; control = 15). Results: ANOVAs indicated that accuracy rates did not differ between the groups but 4-second delay incongruent color-naming Stroop coefficient of variation reaction times were higher in the preclinical Alzheimer’s disease group compared to the control group, reflecting increased within-person variability. Moreover, partial correlations showed no relationships between cerebrospinal fluid biomarkers and accuracy rates. However, increases in coefficient of variation reaction times correlated with decreased Aβ42 and increases in p-tau and the p-tau/Aβ42 ratio. Conclusion: Results supported the ability of the computerized, cued-Stroop task to detect subtle Alzheimer’s disease neuropathology using a small cohort of cognitively asymptomatic older adults. The ongoing measurement of cued-Stroop coefficient of variation reaction times has both scientific and clinical utility in preclinical Alzheimer’s disease.


2017 ◽  
Vol 39 (2) ◽  
pp. 971-984 ◽  
Author(s):  
Christine L. Tardif ◽  
Gabriel A. Devenyi ◽  
Robert S. C. Amaral ◽  
Sandra Pelleieux ◽  
Judes Poirier ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Donovan A. McGrowder ◽  
Fabian Miller ◽  
Kurt Vaz ◽  
Chukwuemeka Nwokocha ◽  
Cameil Wilson-Clarke ◽  
...  

Alzheimer’s disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer’s disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer’s disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer’s disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer’s disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.


Sign in / Sign up

Export Citation Format

Share Document