Homogeneous climate variability across East Antarctica over the past three glacial cycles

Nature ◽  
2003 ◽  
Vol 422 (6931) ◽  
pp. 509-512 ◽  
Author(s):  
O. Watanabe ◽  
J. Jouzel ◽  
S. Johnsen ◽  
F. Parrenin ◽  
H. Shoji ◽  
...  
2019 ◽  
Vol 5 (4) ◽  
pp. eaav7337 ◽  
Author(s):  
M. Willeit ◽  
A. Ganopolski ◽  
R. Calov ◽  
V. Brovkin

Variations in Earth’s orbit pace the glacial-interglacial cycles of the Quaternary, but the mechanisms that transform regional and seasonal variations in solar insolation into glacial-interglacial cycles are still elusive. Here, we present transient simulations of coevolution of climate, ice sheets, and carbon cycle over the past 3 million years. We show that a gradual lowering of atmospheric CO2and regolith removal are essential to reproduce the evolution of climate variability over the Quaternary. The long-term CO2decrease leads to the initiation of Northern Hemisphere glaciation and an increase in the amplitude of glacial-interglacial variations, while the combined effect of CO2decline and regolith removal controls the timing of the transition from a 41,000- to 100,000-year world. Our results suggest that the current CO2concentration is unprecedented over the past 3 million years and that global temperature never exceeded the preindustrial value by more than 2°C during the Quaternary.


2021 ◽  
Vol 568 ◽  
pp. 110280
Author(s):  
Renjie Pei ◽  
Wolfgang Kuhnt ◽  
Ann Holbourn ◽  
Johanna Hingst ◽  
Matthias Koppe ◽  
...  

Boreas ◽  
2005 ◽  
Vol 34 (4) ◽  
pp. 445-455 ◽  
Author(s):  
SILVIA FRISIA ◽  
ANDREA BORSATO ◽  
CHRISTOPH SPÖTL ◽  
IGOR M. VILLA ◽  
FRANCO CUCCHI
Keyword(s):  

2015 ◽  
Vol 30 (6) ◽  
pp. 682-701 ◽  
Author(s):  
Elsa Arellano‐Torres ◽  
Raja S. Ganeshram ◽  
Laetitia E. Pichevin ◽  
David Alberto Salas‐de‐Leon

The Holocene ◽  
2021 ◽  
pp. 095968362110604
Author(s):  
Maxim Ogurtsov ◽  
Samuli Helama ◽  
Risto Jalkanen ◽  
Högne Jungner ◽  
Markus Lindholm ◽  
...  

Fifteen proxy records of summer temperature in Fennoscandia, Northern Europe and in Yamal and Taymir Peninsulas (Western Siberia) were analyzed for the AD 1700–2000 period. Century-long (70–100 year) and quasi bi-decadal periodicities were found from proxy records representing different parts of Fennoscandia. Decadal variation was revealed in a smaller number of records. Statistically significant correlations were revealed between the timescale-dependent components of temperature variability and solar cycles of Schwabe (~11 year), Hale (~22 year), and Gleissberg (сentury-long) as recorded in solar activity data. Combining the results from our correlation analysis with the evidence of solar-climatic linkages over the Northern Fennoscandia obtained over the past 20 years suggest that there are two possible explanations for the obtained solar-proxy relations: (a) the Sun’s activity actually influences the climate variability in Northern Fennoscandia and in some regions of the Northern Hemisphere albeit the mechanism of such solar-climatic linkages are yet to be detailed; (b) the revealed solar-type periodicities result from natural instability of climate system and, in such a case, the correlations may appear purely by chance. Multiple lines of evidence support the first assumption but we note that the second one cannot be yet rejected. Guidelines for further research to elucidate this question are proposed including the Fisher’s combined probability test in the presence of solar signal in multiple proxy records.


2016 ◽  
Vol 62 (236) ◽  
pp. 1037-1048 ◽  
Author(s):  
F. PARRENIN ◽  
S. FUJITA ◽  
A. ABE-OUCHI ◽  
K. KAWAMURA ◽  
V. MASSON-DELMOTTE ◽  
...  

ABSTRACTDocumenting past changes in the East Antarctic surface mass balance is important to improve ice core chronologies and to constrain the ice-sheet contribution to global mean sea-level change. Here we reconstruct past changes in the ratio of surface mass balance (SMB ratio) between the EPICA Dome C (EDC) and Dome Fuji (DF) East Antarctica ice core sites, based on a precise volcanic synchronization of the two ice cores and on corrections for the vertical thinning of layers. During the past 216 000 a, this SMB ratio, denoted SMBEDC/SMBDF, varied between 0.7 and 1.1, being small during cold periods and large during warm periods. Our results therefore reveal larger amplitudes of changes in SMB at EDC compared with DF, consistent with previous results showing larger amplitudes of changes in water stable isotopes and estimated surface temperature at EDC compared with DF. Within the last glacial inception (Marine Isotope Stages, MIS-5c and MIS-5d), the SMB ratio deviates by up to 0.2 from what is expected based on differences in water stable isotope records. Moreover, the SMB ratio is constant throughout the late parts of the current and last interglacial periods, despite contrasting isotopic trends.


2018 ◽  
Vol 14 (4) ◽  
pp. 455-472 ◽  
Author(s):  
Ilaria Tabone ◽  
Javier Blasco ◽  
Alexander Robinson ◽  
Jorge Alvarez-Solas ◽  
Marisa Montoya

Abstract. Observations suggest that during the last decades the Greenland Ice Sheet (GrIS) has experienced a gradually accelerating mass loss, in part due to the observed speed-up of several of Greenland's marine-terminating glaciers. Recent studies directly attribute this to warming North Atlantic temperatures, which have triggered melting of the outlet glaciers of the GrIS, grounding-line retreat and enhanced ice discharge into the ocean, contributing to an acceleration of sea-level rise. Reconstructions suggest that the influence of the ocean has been of primary importance in the past as well. This was the case not only in interglacial periods, when warmer climates led to a rapid retreat of the GrIS to land above sea level, but also in glacial periods, when the GrIS expanded as far as the continental shelf break and was thus more directly exposed to oceanic changes. However, the GrIS response to palaeo-oceanic variations has yet to be investigated in detail from a mechanistic modelling perspective. In this work, the evolution of the GrIS over the past two glacial cycles is studied using a three-dimensional hybrid ice-sheet–shelf model. We assess the effect of the variation of oceanic temperatures on the GrIS evolution on glacial–interglacial timescales through changes in submarine melting. The results show a very high sensitivity of the GrIS to changing oceanic conditions. Oceanic forcing is found to be a primary driver of GrIS expansion in glacial times and of retreat in interglacial periods. If switched off, palaeo-atmospheric variations alone are not able to yield a reliable glacial configuration of the GrIS. This work therefore suggests that considering the ocean as an active forcing should become standard practice in palaeo-ice-sheet modelling.


Sign in / Sign up

Export Citation Format

Share Document