Solar-type periodicities in the climate variability of Northern Fennoscandia during the last three centuries: Real influence of solar activity or natural instability in the climate system

The Holocene ◽  
2021 ◽  
pp. 095968362110604
Author(s):  
Maxim Ogurtsov ◽  
Samuli Helama ◽  
Risto Jalkanen ◽  
Högne Jungner ◽  
Markus Lindholm ◽  
...  

Fifteen proxy records of summer temperature in Fennoscandia, Northern Europe and in Yamal and Taymir Peninsulas (Western Siberia) were analyzed for the AD 1700–2000 period. Century-long (70–100 year) and quasi bi-decadal periodicities were found from proxy records representing different parts of Fennoscandia. Decadal variation was revealed in a smaller number of records. Statistically significant correlations were revealed between the timescale-dependent components of temperature variability and solar cycles of Schwabe (~11 year), Hale (~22 year), and Gleissberg (сentury-long) as recorded in solar activity data. Combining the results from our correlation analysis with the evidence of solar-climatic linkages over the Northern Fennoscandia obtained over the past 20 years suggest that there are two possible explanations for the obtained solar-proxy relations: (a) the Sun’s activity actually influences the climate variability in Northern Fennoscandia and in some regions of the Northern Hemisphere albeit the mechanism of such solar-climatic linkages are yet to be detailed; (b) the revealed solar-type periodicities result from natural instability of climate system and, in such a case, the correlations may appear purely by chance. Multiple lines of evidence support the first assumption but we note that the second one cannot be yet rejected. Guidelines for further research to elucidate this question are proposed including the Fisher’s combined probability test in the presence of solar signal in multiple proxy records.

2021 ◽  
Vol 2103 (1) ◽  
pp. 012023
Author(s):  
M G Ogurtsov

Abstract Three proxy records of Southern Fennoscandia climate variability were analyzed. It was found that their decadal variations correlate significantly (p=0.961-0.993) with a quasi 11-year solar cycle of Schwabe during AD 1706-1990. But two proxy records have significant decadal correlation with the index of summer North-Atlantic Oscillation (SNAO) as well. Taking into account that decadal periodicity in the SNAO index also has some correlation with the solar cycle of Schwabe, the revealed relations could be a result of influence of solar activity on the Southern Fennoscandian climate realizing by the complicated way. Possible causes of such complexity are discussed.


2006 ◽  
Vol 2 (6) ◽  
pp. 1051-1073 ◽  
Author(s):  
O. Solomina ◽  
G. Wiles ◽  
T. Shiraiwa ◽  
R. D’Arrigo

Abstract. Tree rings, ice cores and glacial geologic histories for the past several centuries offer an opportunity to characterize climate variability and to identify the key climate parameters forcing glacier expansions. A newly developed larch ring-width chronology is presented for Kamchatka that is sensitive to past summer temperature variability. This record provides the basis to compare with other proxy records of inferred temperature and precipitation change from ice core and glacier records, and to characterize climate for the region over the past 400 years. Individual low growth years in the larch record are associated with several known and proposed volcanic events that have been observed in other proxy records from the Northern Hemisphere. Comparison of the tree-rings with an ice core record of melt feature index for Kamchatka's Ushkovsky volcano confirms a 1–3 year dating accuracy for this ice core series over the late 18th to 20th centuries. Decadal variations of low summer temperatures (tree-ring record) and high annual precipitation (ice core record) are broadly consistent with intervals of positive mass balance measured and estimated at several glaciers, and with moraine building, provides a basis to interpret geologic glacier records.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
T. Edward Turner ◽  
Graeme T. Swindles ◽  
Dan J. Charman ◽  
Peter G. Langdon ◽  
Paul J. Morris ◽  
...  

Abstract Many studies have reported evidence for solar-forcing of Holocene climate change across a range of archives. These studies have compared proxy-climate data with records of solar variability (e.g. 14C or 10Be), or have used time series analysis to test for the presence of solar-type cycles. This has led to some climate sceptics misrepresenting this literature to argue strongly that solar variability drove the rapid global temperature increase of the twentieth century. As proxy records underpin our understanding of the long-term processes governing climate, they need to be evaluated thoroughly. The peatland archive has become a prominent line of evidence for solar forcing of climate. Here we examine high-resolution peatland proxy climate data to determine whether solar signals are present. We find a wide range of significant periodicities similar to those in records of solar variability: periods between 40–100 years, and 120–140 years are particularly common. However, periodicities similar to those in the data are commonly found in random-walk simulations. Our results demonstrate that solar-type signals can be the product of random variations alone, and that a more critical approach is required for their robust interpretation.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Margit H. Simon ◽  
Martin Ziegler ◽  
Joyce Bosmans ◽  
Stephen Barker ◽  
Chris J.C. Reason ◽  
...  

Abstract Processes that control the hydrological balance in eastern South Africa on orbital to millennial timescales remain poorly understood because proxy records documenting its variability at high resolution are scarce. In this work, we present a detailed 270,000 year-long record of terrestrial climate variability in the KwaZulu-Natal province based on elemental ratios of Fe/K from the southwest Indian Ocean, derived from X-ray fluorescence core scanning. Eastern South African climate variability on these time scales reflects both the long-term effect of regional insolation changes driven by orbital precession and the effects associated with high-latitude abrupt climate forcing over the past two glacial-interglacial cycles, including millennial-scale events not previously identified. Rapid changes towards more humid conditions in eastern South Africa as the Northern Hemisphere entered phases of extreme cooling were potentially driven by a combination of warming in the Agulhas Current and shifts of the subtropical anticyclones. These climate oscillations appear coherent with other Southern Hemisphere records but are anti-phased with respect to the East Asian Monsoon. Numerical modelling results reveal that higher precipitation in the KwaZulu-Natal province during precession maxima is driven by a combination of increased local evaporation and elevated moisture transport into eastern South Africa from the coast of Mozambique.


2021 ◽  
Author(s):  
Mikhail Verbitsky

Abstract. Reconstruction and explanation of past climate evolution using proxy records is the essence of paleoclimatology. In this study, we use dimensional analysis and concepts of similarity to recognize theoretical limits of such forensic inquiries. Specifically, we demonstrate that incomplete similarity in the dynamical ice-climate system implies the absence of physical similarity in conglomerate similarity parameters. It means that major events of the past such as, for example, the middle-Pleistocene transition could have been produced by different physical processes, and, therefore, the task of disambiguation of the historical paleo-records may be fundamentally difficult, if not impossible. It also means that any future scenario may not have a unique cause and, in this sense, the orbital time-scale future may be to some extent insensitive to specific physical circumstances.


2009 ◽  
Vol 5 (S264) ◽  
pp. 155-157
Author(s):  
Alexis Klutsch ◽  
Rubens Freire Ferrero

AbstractThe so-calledsolar cycleis generally characterized by the quasi-periodic oscillatory evolution of the photospheric spots number. This quasi-periodic pattern has always been an intriguing question. Several physical models were proposed to explain this evolution and many mathematical data analysis were employed to determine the principal frequencies noticeable in the measured data. Both approaches try to predict the future evolution of the solar activity and to understand the physical phenomena producing these cycles. Here we present the analysis of the sunspots number evolution using the time-delay approach. Our results show than the solar cycle can also be characterized by this behavior implying the influence of the past evolution over the present one, suggesting an histeresis mechanism, linked probably with magnetic activity.


2020 ◽  
Author(s):  
Janica Buehler ◽  
Moritz Kirschner ◽  
Carla Roesch ◽  
Max D. Holloway ◽  
Louise Sime ◽  
...  

<p>Global changes in climate, especially in mean temperature, receive increasing public as well as scientific attention under the current warming trend. However, the probability of extreme events and their societal impact is also governed by changes in climate variability. Improving the understanding of changes in both and their relationship is crucial for projecting reliable climate change scenarios. Model-data comparisons between general circulation models and speleothem paleoclimate archives, with δ<sup>18</sup>O as a temperature and precipitation proxy, have been suggested to test and validate the capability of different climate models.</p><p>Speleothems are precisely date-able and provide well preserved (semi-)continuous climate signals in the lower and mid-latitudes, providing a suitable archive to assess a model’s capability to simulate climate variability on time scales longer than those observable. However, the δ<sup>18</sup>O measured in speleothem calcite does not directly represent temperature or precipitation but results from multivariate, non-linear processes on top of the dominant meteoric controls on δ<sup>18</sup>O in precipitation.</p><p>Here, we evaluate correlations and networks between different records and power spectral densities across a speleothem database for the past millennium (850-2000CE), testing for representativity of individual records for the time period. Similarity measures are applied to proxy records and to the local climate variables obtained from three isotope-enabled HadCM3 simulations to evaluate simulation biases across different parameters and to distinguish main climate drivers for individual records or regions. The proxy records show strong damping of variability on shorter time scales compared to simulations down-sampled to record-resolution, acting like simple filter processes with realistic time scales for karst transit times.</p><p>Based on the evidence from proxies and models for the past 1000 years, we test for realistic parameter constraints and sufficient complexity of a speleothem proxy system model to represent low-latitude changes in climate variability on interannual to centennial timescales.</p>


2001 ◽  
Vol 203 ◽  
pp. 125-128
Author(s):  
A. Özgüç ◽  
T. Ataç

Using flare index data sets for solar cycles 21 and 22 we find that flare index and some solar activity indicators show a hysteresis phenomenon. It is observed that total sunspot area, mean magnetic field and coronal index follow different paths for the ascending and descending phases of the solar cycles while saturation effect exists at the extreme phases. However, we notice that the separations between the paths are not the same during the past two cycles of 21 and 22.


Solar Physics ◽  
2021 ◽  
Vol 296 (1) ◽  
Author(s):  
V. Courtillot ◽  
F. Lopes ◽  
J. L. Le Mouël

AbstractThis article deals with the prediction of the upcoming solar activity cycle, Solar Cycle 25. We propose that astronomical ephemeris, specifically taken from the catalogs of aphelia of the four Jovian planets, could be drivers of variations in solar activity, represented by the series of sunspot numbers (SSN) from 1749 to 2020. We use singular spectrum analysis (SSA) to associate components with similar periods in the ephemeris and SSN. We determine the transfer function between the two data sets. We improve the match in successive steps: first with Jupiter only, then with the four Jovian planets and finally including commensurable periods of pairs and pairs of pairs of the Jovian planets (following Mörth and Schlamminger in Planetary Motion, Sunspots and Climate, Solar-Terrestrial Influences on Weather and Climate, 193, 1979). The transfer function can be applied to the ephemeris to predict future cycles. We test this with success using the “hindcast prediction” of Solar Cycles 21 to 24, using only data preceding these cycles, and by analyzing separately two 130 and 140 year-long halves of the original series. We conclude with a prediction of Solar Cycle 25 that can be compared to a dozen predictions by other authors: the maximum would occur in 2026.2 (± 1 yr) and reach an amplitude of 97.6 (± 7.8), similar to that of Solar Cycle 24, therefore sketching a new “Modern minimum”, following the Dalton and Gleissberg minima.


Sign in / Sign up

Export Citation Format

Share Document