scholarly journals Dissection of goadsporin biosynthesis by in vitro reconstitution leading to designer analogues expressed in vivo

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Taro Ozaki ◽  
Kona Yamashita ◽  
Yuki Goto ◽  
Morito Shimomura ◽  
Shohei Hayashi ◽  
...  
2018 ◽  
Vol 115 (39) ◽  
pp. 9732-9737 ◽  
Author(s):  
Gamze Ö. Çamdere ◽  
Kristian K. Carlborg ◽  
Douglas Koshland

Cohesin is a four-subunit ATPase in the family of structural maintenance of chromosomes (SMC). Cohesin promotes sister chromatid cohesion, chromosome condensation, DNA repair, and transcription regulation. Cohesin performs these functions as a DNA tether and potentially a DNA-based motor. At least one of its DNA binding activities involves entrapment of DNA within a lumen formed by its subunits. This activity can be reconstituted in vitro by incubating cohesin with DNA, ATP, and cohesin loader. Previously we showed that a mutant form of cohesin (DE-cohesin) possesses the ability to bind and tether DNA in vivo. Using in vitro reconstitution assays, we show that DE-cohesin can form stable complexes with DNA without ATP hydrolysis. We show that wild-type cohesin with ADP aluminum fluoride (cohesinADP/AlFx) can also form stable cohesin–DNA complexes. These results suggest that an intermediate nucleotide state of cohesin, likely cohesinADP-Pi, is capable of initially dissociating one interface between cohesin subunits to allow DNA entry into a cohesin lumen and subsequently interacting with the bound DNA to stabilize DNA entrapment. We also show that cohesinADP/AlFx binding to DNA is enhanced by cohesin loader, suggesting a function for loader other than stimulating the ATPase. Finally, we show that loader remains stably bound to cohesinADP/AlFx after DNA entrapment, potentially revealing a function for loader in tethering the second DNA substrate. These results provide important clues on how SMC complexes like cohesin can function as both DNA tethers and motors.


2017 ◽  
Vol 114 (45) ◽  
pp. 12063-12068 ◽  
Author(s):  
Louis Dumas ◽  
Francesca Zito ◽  
Stéphanie Blangy ◽  
Pascaline Auroy ◽  
Xenie Johnson ◽  
...  

The cytochrome (cyt)b6fcomplex and Stt7 kinase regulate the antenna sizes of photosystems I and II through state transitions, which are mediated by a reversible phosphorylation of light harvesting complexes II, depending on the redox state of the plastoquinone pool. When the pool is reduced, the cytb6factivates the Stt7 kinase through a mechanism that is still poorly understood. After random mutagenesis of the chloroplastpetDgene, coding for subunit IV of the cytb6fcomplex, and complementation of a ΔpetDhost strain by chloroplast transformation, we screened for impaired state transitions in vivo by chlorophyll fluorescence imaging. We show that residues Asn122, Tyr124, and Arg125 in the stromal loop linking helices F and G of cytb6fsubunit IV are crucial for state transitions. In vitro reconstitution experiments with purified cytb6fand recombinant Stt7 kinase domain show that cytb6fenhances Stt7 autophosphorylation and that the Arg125 residue is directly involved in this process. The peripheral stromal structure of the cytb6fcomplex had, until now, no reported function. Evidence is now provided of a direct interaction with Stt7 on the stromal side of the membrane.


2016 ◽  
Vol 27 (16) ◽  
pp. 2590-2597 ◽  
Author(s):  
Michael Zick ◽  
William Wickner

In vitro reconstitution of homotypic yeast vacuole fusion from purified components enables detailed study of membrane fusion mechanisms. Current reconstitutions have yet to faithfully replicate the fusion process in at least three respects: 1) The density of SNARE proteins required for fusion in vitro is substantially higher than on the organelle. 2) Substantial lysis accompanies reconstituted fusion. 3) The Rab GTPase Ypt7 is essential in vivo but often dispensable in vitro. Here we report that changes in fatty acyl chain composition dramatically lower the density of SNAREs that are required for fusion. By providing more physiological lipids with a lower phase transition temperature, we achieved efficient fusion with SNARE concentrations as low as on the native organelle. Although fused proteoliposomes became unstable at elevated SNARE concentrations, releasing their content after fusion had occurred, reconstituted proteoliposomes with substantially reduced SNARE concentrations fused without concomitant lysis. The Rab GTPase Ypt7 is essential on both membranes for proteoliposome fusion to occur at these SNARE concentrations. Strikingly, it was only critical for Ypt7 to be GTP loaded on membranes bearing the R-SNARE Nyv1, whereas the bound nucleotide of Ypt7 was irrelevant on membranes bearing the Q-SNAREs Vam3 and Vti1.


2020 ◽  
Vol 48 (5) ◽  
pp. 2003-2014
Author(s):  
Jahangir Md. Alam ◽  
Nobuo N. Noda

Autophagy is a lysosomal degradation system that involves de novo autophagosome formation. A lot of factors are involved in autophagosome formation, including dozens of Atg proteins that form supramolecular complexes, membrane structures including vesicles and organelles, and even membraneless organelles. Because these diverse higher-order structural components cooperate to mediate de novo formation of autophagosomes, it is too complicated to be elaborated only by cell biological approaches. Recent trials to regenerate each step of this phenomenon in vitro have started to elaborate on the molecular mechanisms of such a complicated process by simplification. In this review article, we outline the in vitro reconstitution trials in autophagosome formation, mainly focusing on the reports in the past few years and discussing the molecular mechanisms of autophagosome formation by comparing in vitro and in vivo observations.


2020 ◽  
Vol 31 (5) ◽  
pp. 335-347 ◽  
Author(s):  
Luther W. Pollard ◽  
Mikael V. Garabedian ◽  
Salvatore L. Alioto ◽  
Shashank Shekhar ◽  
Bruce L. Goode

Yeast actin cables are reconstituted from seven purified proteins, providing a powerful demonstration of how a minimal set of components can self-organize into a micron-scale structure that has many of the same features of actin cables found in vivo.


2015 ◽  
Vol 112 (9) ◽  
pp. 2717-2722 ◽  
Author(s):  
Yi-Ling Du ◽  
Lona M. Alkhalaf ◽  
Katherine S. Ryan

The bacterial tryptophanyl–tRNA synthetase inhibitor indolmycin features a unique oxazolinone heterocycle whose biogenetic origins have remained obscure for over 50 years. Here we identify and characterize the indolmycin biosynthetic pathway, using systematic in vivo gene inactivation, in vitro biochemical assays, and total enzymatic synthesis. Our work reveals that a phenylacetate–CoA ligase-like enzyme Ind3 catalyzes an unusual ATP-dependent condensation of indolmycenic acid and dehydroarginine, driving oxazolinone ring assembly. We find that Ind6, which also has chaperone-like properties, acts as a gatekeeper to direct the outcome of this reaction. With Ind6 present, the normal pathway ensues. Without Ind6, the pathway derails to an unusual shunt product. Our work reveals the complete pathway for indolmycin formation and sets the stage for using genetic and chemoenzymatic methods to generate indolmycin derivatives as potential therapeutic agents.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sebastian Groß ◽  
Bastien Schnell ◽  
Patrick A. Haack ◽  
David Auerbach ◽  
Rolf Müller

Sign in / Sign up

Export Citation Format

Share Document