scholarly journals One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Ze Liu
2014 ◽  
Vol 175 ◽  
pp. 137-151 ◽  
Author(s):  
Wentao Wang ◽  
Fadi Aldeek ◽  
Xin Ji ◽  
Birong Zeng ◽  
Hedi Mattoussi

We designed a new set of polymer ligands that combine multiple metal-coordinating groups and short polyethylene glycol (PEG) moieties in the same structure. The ligand design relies on the controlled grafting of a large number of amine-terminated histamines and PEG short chains onto a poly(isobutylene-alt-maleic anhydride) backbone,viaa one-step nucleophilic addition reaction. This addition reaction is highly efficient, can be carried out in organic media and does not require additional reagents. We show that when imidazole groups are used the resulting polymer ligand can strongly ligate onto metal nanostructures such as nanoparticles (NPs) and nanorods (NRs) made of gold cores. The resulting polymer-coated NPs and NRs exhibit good colloidal stability to pH changes and added electrolytes. This constitutes a departure from the use of thiol-based ligands to coordinate on Au surfaces. The present chemical approach also opens up additional opportunities for designing hydrophilic and reactive platforms where the polymer coating can be adjusted to various metal and metal oxide surfaces by simply modifying or combining the addition reaction with other metal coordinating groups. These could include iron oxide NPs and semiconductor QDs. These polymer-capped NPs and NRs can be used to develop biologically-active platforms with potential use for drug delivery and sensing.


2018 ◽  
Vol 30 (35) ◽  
pp. 1801772 ◽  
Author(s):  
Guoqiang Liu ◽  
Lina Chen ◽  
Jin Liu ◽  
Meng Qiu ◽  
Zhuang Xie ◽  
...  

Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


2010 ◽  
Vol 43 (18) ◽  
pp. 16
Author(s):  
MATTHEW R.G. TAYLOR
Keyword(s):  

2007 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
C.W. Kim ◽  
Y.H. Kim ◽  
H.G. Cha ◽  
D.K. Lee ◽  
Y.S. Kang

2020 ◽  
Author(s):  
Brad Andersh ◽  
John Kuhns
Keyword(s):  

1980 ◽  
Vol 25 (7) ◽  
pp. 536-538
Author(s):  
LUCIA ALBINO GILBERT
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document