scholarly journals Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model

2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Beth N. Orcutt ◽  
C. Geoffrey Wheat ◽  
Olivier Rouxel ◽  
Samuel Hulme ◽  
Katrina J. Edwards ◽  
...  
1958 ◽  
Vol 35 (2) ◽  
pp. 383-395
Author(s):  
R. W. EDWARDS

1. The oxygen consumption rates of 3rd- and 4th-instar larvae of Chironomus riparius have been measured at 10 and 20° C. using a constant-volume respirometer. 2. The oxygen consumption is approximately proportional to the 0.7 power of the dry weight: it is not proportional to the estimated surface area. 3. This relationship between oxygen consumption and dry weight is the same at 10 and at 20° C.. 4. The rate of oxygen consumption at 20° C. is greater than at 10° C. by a factor of 2.6. 5. During growth the percentage of dry matter of 4th-instar larvae increases from 10 to 16 and the specific gravity from 1.030 to 1.043. 6. The change in the dry weight/wet weight ratio during the 4 larval instar supports the theory of heterauxesis. 7. At 20° C., ‘summer’ larvae respire faster than ‘winter’ larvae.


Soil Systems ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 53 ◽  
Author(s):  
Joshua Padilla ◽  
H. Selim

Glyphosate (N-(phosphonomethyl) glycine) (GPS) is currently the most commonly used herbicide worldwide, and is generally considered as immobile in soils. However, numerous reports of the environmental occurrence of the herbicide coupled with recent evidence of human toxicity necessitate further investigation as to the behavior of GPS in the soil environment. Batch sorption studies along with miscible displacement experiments were carried out in order to assess the mobility of GPS in two Louisiana agricultural soils; Commerce silt loam and Sharkey clay. Batch results indicated a high affinity of both soils for solvated GPS, with greater affinity observed by the Sharkey soil. GPS sorption in the Commerce soil was most likely facilitated by the presence of amorphous Fe and Al oxides, whereas the high cation exchange capacity of the Sharkey soil likely allows for GPS complexation with surface exchangeable poly-valent cations. Miscible displacement studies indicate that GPS mobility is highly limited in both soils, with 3% and 2% of the applied herbicide mass recovered in the effluent solution from the Commerce and Sharkey soils, respectively. A two-site multi-reaction transport model (MRTM) adequately described GPS breakthrough from both soils and outperformed linear modeling efforts using CXTFIT. Analysis of extracted herbicide residues suggests that the primary metabolite of GPS, aminomethylphosphonic acid (AMPA), is more mobile in both soils, although both compounds are strongly retained.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
José Adan Arevalo ◽  
Marvin L. Miller ◽  
José Pablo Vazquez-Medina ◽  
George A. Brooks

2010 ◽  
Vol 01 (05) ◽  
pp. 398-408 ◽  
Author(s):  
Timothy J. Strovas ◽  
Sarah C. McQuaide ◽  
Judy B. Anderson ◽  
Vivek Nandakumar ◽  
Marina G. Kalyuzhnaya ◽  
...  

1995 ◽  
Vol 198 (2) ◽  
pp. 349-358 ◽  
Author(s):  
S Piller ◽  
R Henry ◽  
J Doeller ◽  
D Kraus

Callinectes sapidus and C. similis co-occur in estuarine waters above 15 salinity. Callinectes sapidus also inhabits more dilute waters, but C. similis is rarely found below 15 . Previous work suggests that C. sapidus may be a better hyperosmoregulator than C. similis. In this study, energy metabolism and the levels of transport-related enzymes in excised gills were used as indicators of adaptation to low salinity. Oxygen consumption rates and mitochondrial cytochrome content of excised gills increased in both species as acclimation salinity decreased, but to a significantly greater extent in C. similis gills. In addition, C. similis gills showed the same levels of carbonic anhydrase and Na+/K+-ATPase activities and the same degree of enzyme induction during low-salinity adaptation as has been reported for C. sapidus gills. However, hemolymph osmolality and ion concentrations were consistently lower in C. similis at low salinity than in C. sapidus. Therefore, although gills from low-salinity-acclimated C. similis have a higher oxygen consumption rate and more mitochondrial cytochromes than C. sapidus gills and the same level of transport-related enzymes, C. similis cannot homeostatically regulate their hemolymph to the same extent as C. sapidus.


1960 ◽  
Vol 37 (4) ◽  
pp. 706-718
Author(s):  
R. W. EDWARDS ◽  
M. A. LEARNER

1. The oxygen-consumption rates of Asellus aquaticus (males and females) have been measured at 10 and 20° C. using a constant-volume respirometer, and the effect of starvation for 24 hr. investigated. The oxygen consumption is approximately proportional to the 0.7 power of the wet weight. The rate of oxygen consumption at 20° C. is greater than at 10° C. by a factor of 1.5. 2. The oxygen-consumption rates of A. aquaticus and A. meridianus have been measured at 20° C. in a flowing-water respirometer employing a polarographic technique for the measurement of dissolved-oxygen concentrations. The oxygen consumptions of A. aquaticus and A. meridianus are similar and decrease by 15-20% when the dissolved-oxygen concentration falls from 8.3 to 1.5 p.p.m. 3. The oxygen consumption of A. aquaticus is between 35 and 75% higher in the polarographic respirometer than in the constant-volume respirometer.


Sign in / Sign up

Export Citation Format

Share Document