A genome-wide association study of global gene expression

2007 ◽  
Vol 39 (10) ◽  
pp. 1202-1207 ◽  
Author(s):  
Anna L Dixon ◽  
Liming Liang ◽  
Miriam F Moffatt ◽  
Wei Chen ◽  
Simon Heath ◽  
...  
2021 ◽  
Vol 15 ◽  
Author(s):  
He Li ◽  
Xiaodan Hou ◽  
Yan Liang ◽  
Fang Xu ◽  
Xiyue Zhang ◽  
...  

Multiple sclerosis (MS) is an autoimmune disorder influenced by genetic and environmental factors. Many studies have provided insights into genetic factors’ contribution to MS via large-scale genome-wide association study (GWAS) datasets. However, genetic variants identified to date do not adequately explain genetic risks for MS. This study hypothesized that novel MS risk genes could be identified by analyzing the MS-GWAS dataset using gene-based tests. We analyzed a GWAS dataset consisting of 9,772 MS cases and 17,376 healthy controls of European descent. We performed gene-based tests of 464,357 autosomal single nucleotide polymorphisms (SNPs) using two methods (PLINK and VEGAS2) and identified 28 shared genes satisfied p-value < 4.56 × 10–6. In further gene expression analysis, ten of the 28 genes were significantly differentially expressed in the MS case-control gene expression omnibus (GEO) database. GALC and HLA-DOB showed the most prominent differences in gene expression (two- and three-fold, respectively) between MS patients and healthy controls. In conclusion, our results reveal more information about MS hereditary characteristics and provide a basis for further studies.


2012 ◽  
Vol 21 (9) ◽  
pp. 2111-2123 ◽  
Author(s):  
Darren A. Cusanovich ◽  
Christine Billstrand ◽  
Xiang Zhou ◽  
Claudia Chavarria ◽  
Sherryl De Leon ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sooim Sin ◽  
Hye-Mi Choi ◽  
Jiwon Lim ◽  
Jeeyoung Kim ◽  
So Hyeon Bak ◽  
...  

AbstractEmphysema is an important feature of chronic obstructive pulmonary disease (COPD). Genetic factors likely affect emphysema pathogenesis, but this question has predominantly been studied in those of European ancestry. In this study, we sought to determine genetic components of emphysema severity and characterize the potential function of the associated loci in Korean population. We performed a genome-wide association study (GWAS) on quantitative emphysema in subjects with or without COPD from two Korean COPD cohorts. We investigated the functional consequences of the loci using epigenetic annotation and gene expression data. We also compared our GWAS results with an epigenome-wide association study and previous differential gene expression analysis. In total, 548 subjects (476 [86.9%] male) including 514 COPD patients were evaluated. We identified one genome-wide significant SNP (P < 5.0 × 10–8), rs117084279, near PIBF1. We identified an additional 57 SNPs (P < 5.0 × 10–6) associated with emphysema in all subjects, and 106 SNPs (P < 5.0 × 10–6) in COPD patients. Of these candidate SNPs, 2 (rs12459249, rs11667314) near CYP2A6 were expression quantitative trait loci in lung tissue and a SNP (rs11214944) near NNMT was an expression quantitative trait locus in whole blood. Of note, rs11214944 was in linkage disequilibrium with variants in enhancer histone marks in lung tissue. Several genes near additional SNPs were identified in our previous EWAS study with nominal level of significance. We identified a novel SNP associated with quantitative emphysema on CT. Including the novel SNP, several candidate SNPs in our study may provide clues to the genetic etiology of emphysema in Asian populations. Further research and validation of the loci will help determine the genetic factors for the development of emphysema.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shaoxing Bai ◽  
Jun Hong ◽  
Ling Li ◽  
Su Su ◽  
Zhikang Li ◽  
...  

AbstractPanicle architecture is one of the major factors influencing productivity of rice crops. The regulatory mechanisms underlying this complex trait are still unclear and genetic resources for rice breeders to improve panicle architecture are limited. Here, we have performed a genome-wide association study (GWAS) to analyze and identify genetic determinants underlying three panicle architecture traits. A population of 340 rice accessions from the 3000 Rice Genomes Project was phenotyped for panicle length, primary panicle number and secondary branch number over two years; GWAS was performed across the whole panel, and also across the japonica and indica sub-panels. A total of 153 quantitative trait loci (QTLs) were detected, of which 5 were associated with multiple traits, 8 were unique to either indica or japonica sub-panels, while 37 QTLs were stable across both years. Using haplotype and expression analysis, we reveal that genetic variations in the OsSPL18 promoter significantly affect gene expression and correlate with panicle length phenotypes. Three new candidate genes with putative roles in determining panicle length were also identified. Haplotype analysis of OsGRRP and LOC_Os03g03480 revealed high association with panicle length variation. Gene expression of DSM2, involved in abscisic acid biosynthesis, was up-regulated in long panicle accessions. Our results provide valuable information and resources for further unravelling the genetic basis determining rice panicle architecture. Identified candidate genes and molecular markers can be used in marker-assisted selection to improve rice panicle architecture through molecular breeding.


Sign in / Sign up

Export Citation Format

Share Document