scholarly journals DNA library construction using Gibson Assembly®

2015 ◽  
Vol 12 (11) ◽  
pp. i-ii ◽  
Author(s):  
Steven Thomas ◽  
Nathaniel D Maynard ◽  
John Gill
Polar Biology ◽  
2009 ◽  
Vol 33 (5) ◽  
pp. 617-626 ◽  
Author(s):  
Shenghao Liu ◽  
Hyoungseok Lee ◽  
Pil-Sung Kang ◽  
Xiaohang Huang ◽  
Joung Han Yim ◽  
...  

2018 ◽  
Vol 46 (6) ◽  
pp. 2701-2721 ◽  
Author(s):  
Morgane Boone ◽  
Andries De Koker ◽  
Nico Callewaert

2020 ◽  
Vol 19 (5-6) ◽  
pp. 339-342 ◽  
Author(s):  
Krishna A Srinivasan ◽  
Suman K Virdee ◽  
Andrew G McArthur

Abstract RNA sequencing (RNA-Seq) is a complicated protocol, both in the laboratory in generation of data and at the computer in analysis of results. Several decisions during RNA-Seq library construction have important implications for analysis, most notably strandedness during complementary DNA library construction. Here, we clarify bioinformatic decisions related to strandedness in both alignment of DNA sequencing reads to reference genomes and subsequent determination of transcript abundance.


2007 ◽  
Vol 74 (5) ◽  
pp. 1649-1652 ◽  
Author(s):  
Jonathan E. Schmitz ◽  
Anu Daniel ◽  
Mattias Collin ◽  
Raymond Schuch ◽  
Vincent A. Fischetti

ABSTRACT A rapid protocol was developed for constructing plasmid libraries from small quantities of genomic/metagenomic DNA. The technique utilizes linker amplification with topoisomerase cloning and allows for inducible transcription in Escherichia coli. As proof of principle, several anti-Bacillus lysins were cloned from bacteriophage genomes and an aerolysin was cloned from a metagenomic sample.


Genomics ◽  
1990 ◽  
Vol 7 (3) ◽  
pp. 363-376 ◽  
Author(s):  
Fatima E. Abidi ◽  
Morimasa Wada ◽  
Randall D. Little ◽  
David Schlessinger

2022 ◽  
Vol 12 ◽  
Author(s):  
Taisuke Wakamatsu ◽  
Saki Mizobuchi ◽  
Fumiaki Mori ◽  
Taiki Futagami ◽  
Takeshi Terada ◽  
...  

Substrate-induced gene expression (SIGEX) is a high-throughput promoter-trap method. It is a function-based metagenomic screening tool that relies on transcriptional activation of a reporter gene green fluorescence protein (gfp) by a metagenomic DNA library upon induction with a substrate. However, its use is limited because of the relatively small size of metagenomic DNA libraries and incompatibility with screening metagenomes from anaerobic environments. In this study, these limitations of SIGEX were addressed by fine-tuning metagenome DNA library construction protocol and by using Evoglow, a green fluorescent protein that forms a chromophore even under anaerobic conditions. Two metagenomic libraries were constructed for subseafloor sediments offshore Shimokita Peninsula (Pacific Ocean) and offshore Joetsu (Japan Sea). The library construction protocol was improved by (a) eliminating short DNA fragments, (b) applying topoisomerase-based high-efficiency ligation, (c) optimizing insert DNA concentration, and (d) column-based DNA enrichment. This led to a successful construction of metagenome DNA libraries of approximately 6 Gbp for both samples. SIGEX screening using five aromatic compounds (benzoate, 3-chlorobenzoate, 3-hydroxybenzoate, phenol, and 2,4-dichlorophenol) under aerobic and anaerobic conditions revealed significant differences in the inducible clone ratios under these conditions. 3-Chlorobenzoate and 2,4-dichlorophenol led to a higher induction ratio than that for the other non-chlorinated aromatic compounds under both aerobic and anaerobic conditions. After the further screening of induced clones, a clone induced by 3-chlorobenzoate only under anaerobic conditions was isolated and characterized. The clone harbors a DNA insert that encodes putative open reading frames of unknown function. Previous aerobic SIGEX attempts succeeded in the isolation of gene fragments from anaerobes. This study demonstrated that some gene fragments require a strict in vivo reducing environment to function and may be potentially missed when screened by aerobic induction. The newly developed anaerobic SIGEX scheme will facilitate functional exploration of metagenomes from the anaerobic biosphere.


The Analyst ◽  
2021 ◽  
Author(s):  
Jiawei Qi ◽  
Pinhua Rao ◽  
Lele Wang ◽  
Li Xu ◽  
Yanli Wen ◽  
...  

Pattern recognition, also called “array sensing” is a recognition strategy with a wide and expandable analysis range, based on the high-throughput analysis data. In this work, we constructed a sensor...


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Dieter M. Tourlousse ◽  
Koji Narita ◽  
Takamasa Miura ◽  
Mitsuo Sakamoto ◽  
Akiko Ohashi ◽  
...  

Abstract Background Validation and standardization of methodologies for microbial community measurements by high-throughput sequencing are needed to support human microbiome research and its industrialization. This study set out to establish standards-based solutions to improve the accuracy and reproducibility of metagenomics-based microbiome profiling of human fecal samples. Results In the first phase, we performed a head-to-head comparison of a wide range of protocols for DNA extraction and sequencing library construction using defined mock communities, to identify performant protocols and pinpoint sources of inaccuracy in quantification. In the second phase, we validated performant protocols with respect to their variability of measurement results within a single laboratory (that is, intermediate precision) as well as interlaboratory transferability and reproducibility through an industry-based collaborative study. We further ascertained the performance of our recommended protocols in the context of a community-wide interlaboratory study (that is, the MOSAIC Standards Challenge). Finally, we defined performance metrics to provide best practice guidance for improving measurement consistency across methods and laboratories. Conclusions The validated protocols and methodological guidance for DNA extraction and library construction provided in this study expand current best practices for metagenomic analyses of human fecal microbiota. Uptake of our protocols and guidelines will improve the accuracy and comparability of metagenomics-based studies of the human microbiome, thereby facilitating development and commercialization of human microbiome-based products.


Sign in / Sign up

Export Citation Format

Share Document