Parvalbumin interneurons provide grid cell–driven recurrent inhibition in the medial entorhinal cortex

2014 ◽  
Vol 17 (5) ◽  
pp. 710-718 ◽  
Author(s):  
Christina Buetfering ◽  
Kevin Allen ◽  
Hannah Monyer
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Louis Kang ◽  
Vijay Balasubramanian

Grid cells in the medial entorhinal cortex (MEC) respond when an animal occupies a periodic lattice of ‘grid fields’ in the environment. The grids are organized in modules with spatial periods, or scales, clustered around discrete values separated on average by ratios in the range 1.4–1.7. We propose a mechanism that produces this modular structure through dynamical self-organization in the MEC. In attractor network models of grid formation, the grid scale of a single module is set by the distance of recurrent inhibition between neurons. We show that the MEC forms a hierarchy of discrete modules if a smooth increase in inhibition distance along its dorso-ventral axis is accompanied by excitatory interactions along this axis. Moreover, constant scale ratios between successive modules arise through geometric relationships between triangular grids and have values that fall within the observed range. We discuss how interactions required by our model might be tested experimentally.


2014 ◽  
Vol 369 (1635) ◽  
pp. 20120523 ◽  
Author(s):  
Michael E. Hasselmo

Data show a relationship of cellular resonance and network oscillations in the entorhinal cortex to the spatial periodicity of grid cells. This paper presents a model that simulates the resonance and rebound spiking properties of entorhinal neurons to generate spatial periodicity dependent upon phasic input from medial septum. The model shows that a difference in spatial periodicity can result from a difference in neuronal resonance frequency that replicates data from several experiments. The model also demonstrates a functional role for the phenomenon of theta cycle skipping in the medial entorhinal cortex.


2014 ◽  
Vol 369 (1635) ◽  
pp. 20120520 ◽  
Author(s):  
Christoph Schmidt-Hieber ◽  
Michael Häusser

Neurons in the medial entorhinal cortex fire action potentials at regular spatial intervals, creating a striking grid-like pattern of spike rates spanning the whole environment of a navigating animal. This remarkable spatial code may represent a neural map for path integration. Recent advances using patch-clamp recordings from entorhinal cortex neurons in vitro and in vivo have revealed how the microcircuitry in the medial entorhinal cortex may contribute to grid cell firing patterns, and how grid cells may transform synaptic inputs into spike output during firing field crossings. These new findings provide key insights into the ingredients necessary to build a grid cell.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
J. Cuneo ◽  
L. Barboni ◽  
N. Blanco ◽  
M. del Castillo ◽  
J. Quagliotti

This article presents the implementation and use of a two-wheel autonomous robot and its effectiveness as a tool for studying the recently discovered use of grid cells as part of mammalian’s brains space-mapping circuitry (specifically the medial entorhinal cortex). A proposed discrete-time algorithm that emulates the medial entorhinal cortex is programed into the robot. The robot freely explores a limited laboratory area in the manner of a rat or mouse and reports information to a PC, thus enabling research without the use of live individuals. Position coordinate neural maps are achieved as mathematically predicted although for a reduced number of implemented neurons (i.e., 200 neurons). However, this type of computational embedded system (robot’s microcontroller) is found to be insufficient for simulating huge numbers of neurons in real time (as in the medial entorhinal cortex). It is considered that the results of this work provide an insight into achieving an enhanced embedded systems design for emulating and understanding mathematical neural network models to be used as biologically inspired navigation system for robots.


2018 ◽  
Author(s):  
Nupur Katyare ◽  
Sujit Sikdar

Grid cell spatial period is thought to be dictated by a mapping between the speed-direction modulated excitatory inputs, and consequent modulation of the firing rate, yet, the exact underlying mechanisms are not known. Here, through experiments on the medial entorhinal cortex stellate cells, subjected to in-vivo like stochastic synaptic activity through the dynamic clamp, we show that such mapping can emerge from a theta-frequency resonance in the signal gain, which is HCN sensitive, robust to noise, and is potent enough to modulate the synaptic responses in the theta frequency. This modulation also extends to the corresponding theta-gamma modulation of the firing rate, the slope of whose excitation mediated increase is steeper in the presence of HCN channels. We also show that in the cells devoid of HCN channels, inhibition can emulate their role. Considering the dorso-ventral gradients of HCN and inhibition, which are present aligned to the grid spacing gradient in the medial entorhinal cortex, these findings should be noteworthy.


2019 ◽  
Author(s):  
Hugh Pastoll ◽  
Derek Garden ◽  
Ioannis Papastathopoulos ◽  
Gülşen Sürmeli ◽  
Matthew F. Nolan

AbstractDistinctions between cell types underpin organisational principles for nervous system function. Functional variation also exists between neurons of the same type. This is exemplified by correspondence between grid cell spatial scales and synaptic integrative properties of stellate cells (SCs) in the medial entorhinal cortex. However, we know little about how functional variability is structured either within or between individuals. Using ex-vivo patch-clamp recordings from up to 55 SCs per mouse, we find that integrative properties vary between mice and, in contrast to modularity of grid cell spatial scales, have a continuous dorsoventral organisation. Our results constrain mechanisms for modular grid firing and provide evidence for inter-animal phenotypic variability among neurons of the same type. We suggest that neuron type properties are tuned to circuit level set points that vary within and between animals.


Neuron ◽  
2008 ◽  
Vol 60 (5) ◽  
pp. 875-889 ◽  
Author(s):  
Derek L.F. Garden ◽  
Paul D. Dodson ◽  
Cian O'Donnell ◽  
Melanie D. White ◽  
Matthew F. Nolan

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Ipshita Zutshi ◽  
Maylin L. Fu ◽  
Varoth Lilascharoen ◽  
Jill K. Leutgeb ◽  
Byung Kook Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document