scholarly journals Docking studies to explore novel inhibitors against human beta-site APP cleaving enzyme (BACE-1) involved in Alzheimer’s disease

2012 ◽  
Author(s):  
S Anjum Mobeen ◽  
Manne Munikumar ◽  
Amineni Umamaheswari
2019 ◽  
Vol 16 (7) ◽  
pp. 775-784
Author(s):  
Richa Arya ◽  
Satya Prakash Gupta ◽  
Sarvesh Paliwal ◽  
Swapnil Sharma ◽  
Kirtika Madan ◽  
...  

Background: Alzheimer’s disease is a medical condition with detrimental brain health. It is majorly diagnosed in aging individuals plaque in β) characterized by accumulated Amyloidal beta (A 1 BACE) 1 secretase APP cleavage enzyme βneurological areas. The ) is the target of choice that can be exploited to find drugs against Alzheimer’s disease. Methods: A series of BACE-1 inhibitors with reported binding constant were considered for the development of a feature based pharmacophore model. Results: The good correlation coefficient (r=0.91) and RMSD of 0.93 was observed with 30 compounds in training set. The model was validated internally (r2test=0.76) as well as externally by Fischer validation. The pharmacophore based virtual screening retrieved compounds that were docked and biologically evaluated. Conclusion: The three structurally diverse molecules were tested by in-vitro method. The pyridine derivative with highest fit value (6.9) exhibited IC50 value of 2.70 µM and thus was found to be the most promising lead molecule as BACE-1 inhibitor.


2021 ◽  
pp. 1-17
Author(s):  
Alvaro Miranda ◽  
Enrique Montiel ◽  
Henning Ulrich ◽  
Cristian Paz

Alzheimer’s disease (AD) is associated with marked atrophy of the cerebral cortex and accumulation of amyloid plaques and neurofibrillary tangles. Amyloid plaques are formed by oligomers of amyloid-β (Aβ) in the brain, with a length of 42 and 40 amino acids. α-secretase cleaves amyloid-β protein precursor (AβPP) producing the membrane-bound fragment CTFα and the soluble fragment sAβPPα with neuroprotective activity; β-secretase produces membrane-bound fragment CTFβ and a soluble fragment sAβPPβ. After α-secretase cleavage of AβPP, γ-secretase cleaves CTFα to produce the cytoplasmic fragment AICD and P3 in the non-amyloidogenic pathway. CTFβ is cleaved by γ-secretase producing AICD as well as Aβ in amyloidogenic pathways. In the last years, the study of natural products and synthetic compounds, such as α-secretase activity enhancers, β-secretase inhibitors (BACE-1), and γ-secretase activity modulators, have been the focus of pharmaceuticals and researchers. Drugs were improved regarding solubility, blood-brain barrier penetration, selectivity, and potency decreasing Aβ42. In this regard, BACE-1 inhibitors, such as Atabecestat, NB-360, Umibecestat, PF-06751979, Verubecestat, LY2886721, Lanabecestat, LY2811376, and Elenbecestat, were submitted to phase I-III clinical trials. However, inhibition of Aβ production did not recover cognitive functions or reverse the disease. Novel strategies are being developed, aiming at a partial reduction of Aβ production, such as the development of γ-secretase modulators or α-secretase enhancers. Such therapeutic tools shall focus on slowing down or minimizing the progression of neuronal damage. Here, we summarize structures and the activities of the latest compounds designed for AD treatment, with remarkable in vitro, in vivo, and clinical phase activities.


Author(s):  
Punabaka Jyothi ◽  
Kuna Yellamma

Objective: Alzheimer’s disease (AD), a progressive neurodegenerative disorder with many cognitive and neuropsychiatric symptoms, is biochemically characterized by a significant decrease in the brain neurotransmitter Acetylcholine (ACh).Methods: In the present insilico study, six plant bioactive compounds namely Harmol, Vasicine, Harmaline, Harmine, Harmane and Harmalol (from P. Nigellastrum Bunge) were analyzed for their inhibitory role on AChE (Acetylcholinesterase) and BChE (Butyrylcholinesterase) activity by applying the molecular docking studies. Other parameters viz. determination of molecular interaction-based binding affinity values, protein-ligand interactions, Lipinski rule of five, functional properties and biological activities for the above compounds were also calculated by employing the appropriate bioinformatics tools.Results: The results of docking analysis clearly showed that Harmalol has highest binding affinity with AChE (-8.6 kcal/mole) and BChE (-8.0 kcal/mole) but it does not qualified the enzyme inhibitory activity, since it was exerted, and also has least percentage activity on AD and neurodegenerative disease. Whereas, the Harmine has been second qualified binding affinity (-8.4 kcal/mol) and first in other parameters when compared with Harmalol.Conclusion: Based on docking results and other parameters conducted, we are concluding that Harmine is the best compound for further studies to treat AD.Keywords: Alzheimer's disease (AD), Acetylcholinesterase, Butyrylcholinesterase, Lead Molecules


2015 ◽  
Vol 51 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Muhammad Yar ◽  
Muhammad Arshad ◽  
Ariba Farooq ◽  
Mazhar Amjad Gilani ◽  
Khurshid Ayub ◽  
...  

Alzheimer's disease (AD) is a fast growing neurodegenerative disorder of the central nervous system and anti-oxidants can be used to help suppress the oxidative stress caused by the free radicals that are responsible for AD. A series of selected synthetic indole derivatives were biologically evaluated to identify potent new antioxidants. Most of the evaluated compounds showed significant to modest antioxidant properties (IC50 value 399.07 140.0±50 µM). Density Functional Theory (DFT) studies were carried out on the compounds and their corresponding free radicals. Differences in the energy of the parent compounds and their corresponding free radicals provided a good justification for the trend found in their IC50 values. In silico, docking of compounds into the proteins acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which are well known for contributing in AD disease, was also performed to predict anti-AD potential.


Sign in / Sign up

Export Citation Format

Share Document