Caenorhabditis elegans operons: form and function

2003 ◽  
Vol 4 (2) ◽  
pp. 110-118 ◽  
Author(s):  
Thomas Blumenthal ◽  
Kathy Seggerson Gleason
2000 ◽  
Vol 28 (4) ◽  
pp. 464-469 ◽  
Author(s):  
D. Coates ◽  
R. Siviter ◽  
R. E. Isaac

Comparison of peptidase gene families in the newly released Drosophila melanogaster and Caenorhabditis elegans genomes highlights important differences in peptidase distributions with relevance to the evolution of both form and function in these two organisms and can help to identify the most appropriate model when using comparative studies relevant to the human condition.


Development ◽  
1997 ◽  
Vol 124 (11) ◽  
pp. 2099-2117 ◽  
Author(s):  
M.C. Fishman ◽  
K.R. Chien

Our goal here is to set out the types of unitary decisions made by heart progenitor cells, from their appearance in the heart field until they form the simple heart tube. This provides a context to evaluate cell fate, lineage and, finally, morphogenetic decisions that configure global heart form and function. Some paradigms for cellular differentiation and for pattern generation may be borrowed from invertebrates, but neither Drosophila nor Caenorhabditis elegans suffice to unravel higher order decisions. Genetic analyses in mouse and zebrafish may provide one entrance to these pathways.


Author(s):  
Patricia G. Arscott ◽  
Gil Lee ◽  
Victor A. Bloomfield ◽  
D. Fennell Evans

STM is one of the most promising techniques available for visualizing the fine details of biomolecular structure. It has been used to map the surface topography of inorganic materials in atomic dimensions, and thus has the resolving power not only to determine the conformation of small molecules but to distinguish site-specific features within a molecule. That level of detail is of critical importance in understanding the relationship between form and function in biological systems. The size, shape, and accessibility of molecular structures can be determined much more accurately by STM than by electron microscopy since no staining, shadowing or labeling with heavy metals is required, and there is no exposure to damaging radiation by electrons. Crystallography and most other physical techniques do not give information about individual molecules.We have obtained striking images of DNA and RNA, using calf thymus DNA and two synthetic polynucleotides, poly(dG-me5dC)·poly(dG-me5dC) and poly(rA)·poly(rU).


2011 ◽  
Author(s):  
Scott Fluke ◽  
Russell J. Webster ◽  
Donald A. Saucier

2013 ◽  
Author(s):  
Joshua Wilt ◽  
William Revelle

Sign in / Sign up

Export Citation Format

Share Document